簡易檢索 / 詳目顯示

研究生: 林以理
Lin, Yi-Li
論文名稱: 結合高度正相關GRB2 和 14-3-3θ新癌幹細胞標記提供較準確的大腸癌預後情形
Combination of positively correlated novel cancer stem cell markers GRB2 and 14-3-3θ provides improved prognosis prediction in colon cancer
指導教授: 李佳霖
Lee, Jia-Lin
口試委員: 王翊青
Wang, I-Ching
林澤
Lin, Che
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 51
中文關鍵詞: 癌幹細胞癌幹細胞/預後標記大腸癌
外文關鍵詞: Cancer stem cell, Cancer stem cell/prognostic marker, Colon cancer
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大腸癌為發生率很高的癌症類型,是全世界致死率前三名的癌症,大約有一半的病人最終會產生癌症轉移。腫瘤能對抗傳統化療以及放射療法的原因在於它複雜的異質性。研究發現在腫瘤中有一群非常少量的細胞稱為癌症幹細胞。癌幹細胞具有自我更新、抗藥性以及轉移的能力被認為是使腫瘤產生異質性的主要原因,越來越多研究以殺死癌幹細胞作為一個治療癌症的策略。因此,具有高度幹細胞的標記表現的病人應該會有較差的預後表現。

    在此篇研究中我們和林澤教授的實驗室合作(國立清華大學通訊工程研究所),利用他們以系統生物學篩選出來的四個可能的大腸癌幹細胞預後標記 CAND1、COPS5、GRB2以及14-3-3θ。為了探討這四個標記對於預後的影響,我們利用了免疫組織化學染色法(Immunohistochemistry, IHC)對大腸癌的患者組織進行染色,並使用半定量的計算方式對染色結果進行量化,將病人分為正及負的表現群以利於計算腫瘤分期、淋巴轉移以及遠端轉移等預後的情形。我們比較了傳統的8個癌幹細胞標記:EpCAM、CD44、ALCAM、CD133、ABCB1、ABCC1、ABCG2、ALDH1A1以及新的4個大腸癌幹細胞標記。結果顯示,單一表現的傳統癌幹細胞標記對預後不具有顯著性的影響。相反地,四個可能標記中的GRB2以及14-3-3θ高度表現會降低大腸癌病患的存活率。不僅如此,我們發現他們在大腸癌病患中呈正相關的表現。在組合標記進行存活分析的結果中, GRB2和14-3-3θ 的共同表現更降低了大腸癌患者的存活率。綜合以上結果,我們認為GRB2和14-3-3θ是新的大腸癌幹細胞以及預後的標記,不僅比傳統的癌幹細胞更加的準確,他們的共同表現更惡化了大腸癌的預後情形。


    A common cancer among males and females, colon cancer (CC) contributes to significant cancer-related deaths. Approximately 50% of CCs metastasize. Tumor undergoing traditional chemotherapy or radiotherapy may not be completely eliminated due to cellular heterogeneity. A small subset of cells, known as cancer stem cells (CSCs), are reported to promote drug-resistance, self-renewal and metastasis in tumor. Therefore, cancer stem cells are linked to poor prognosis.

    In this project, we cooperated with Dr. Che Lin (Institute of Communications Engineering, NTHU), who selected 4 potential colon CSC and prognostic markers via system biology method: COPS5, CAND1, GRB2, and 14-3-3θ. They also constructed protein-protein interaction networks (PPINs) that displayed the correlation of the potential markers with the traditional markers. To validate these candidate proteins as CSC/prognostic markers, we used immunohistochemistry (IHC) to compare them with 8 traditional CSC markers, EpCAM, CD44, ALCAM, CD133, ABCB1, ABCC1, ABCG2 and ALDH1A1. We investigated the prognostic status on 8 traditional CSC markers and 4 potential CSC markers. Oue data suggested that traditional CSC markers are not accurate enough to predict patient survival in colon cancer. On the other hand, two of the potential markers, GRB2 and 14-3-3θ, showed a positive correlation with poor survival in patients, and such correlation was found to be even more significant when combining both markers (GRB2+ and 14-3-3θ+). These results suggest that GRB2 and 14-3-3θ are not only novel colon cancer stem cell (CCSC) markers, their positive combinational expression provide more accurate prognostic prediction in colon cancer patients.

    Chapter 1 Introduction 2 1.1 Colon cancer 2 1.2 Cancer stem cell 2 1.3 Colon cancer stem cell markers 4 1.4 Cancer stem cell and prognosis 6 Chapter 2 Materials and methods 8 2.1 Core CCSC marker candidates 8 2.2 Microarray datasets 9 2.3 Colon tissue array samples and IHC protocol 9 2.4 Statistical analysis 10 Chapter 3 Results 12 3.1 A semi-quantitative method for calculating positive signals of immunohistochemistry 12 3.2 Statistical analysis based on the immunohistochemistry score 12 3.3. GRB2 and 14-3-3θ as novel cancer stem cell/prognostic markers in colon cancer 13 3.4 Combination of positively correlated markers GRB2 and 14-3-3θ provides improved prognosis prediction 14 Chapter 4 Discussion 14 References 21 Figures and legends 28

    1. Torre, L.A., et al., Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 2015. 65(2): p. 87-108.
    2. American Cancer Society. What Is Colorectal Cancer? 2017 July 21]; Available from: https://www.cancer.org/cancer/colon-rectal-cancer/about/what-is-colorectal-cancer.html#written_by.
    3. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2017. CA: A Cancer Journal for Clinicians, 2017. 67(1): p. 7-30.
    4. Siegel, R.L., et al., Colorectal cancer statistics, 2017. CA: A Cancer Journal for Clinicians, 2017. 67(3): p. 177-193.
    5. Van Cutsem, E., B. Nordlinger, and A. Cervantes, Advanced colorectal cancer: ESMO Clinical Practice Guidelines for treatment. Annals of Oncology, 2010. 21(suppl_5): p. v93-v97.
    6. Woo, I.S. and Y.H. Jung, Metronomic chemotherapy in metastatic colorectal cancer. Cancer Letters, 2017. 400: p. 319-324.
    7. Dean, M., T. Fojo, and S. Bates, Tumour stem cells and drug resistance. Nat Rev Cancer, 2005. 5(4): p. 275-284.
    8. Lapidot, T., et al., A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994. 367(6464): p. 645-648.
    9. Bonnet, D. and J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 1997. 3(7): p. 730-737.
    10. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences, 2003. 100(7): p. 3983-3988.
    11. Singh, S.K., et al., Identification of a Cancer Stem Cell in Human Brain Tumors. Cancer Research, 2003. 63(18): p. 5821.
    12. Bu, P., et al., Asymmetric division: a marker for cancer stem cells? Oncotarget, 2013. 4(7): p. 950-951.
    13. Reya, T., et al., Stem cells, cancer, and cancer stem cells. Nature, 2001. 414(6859): p. 105-111.
    14. Hirschmann-Jax, C., et al., A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(39): p. 14228-14233.
    15. Mani, S.A., et al., The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells. Cell, 2008. 133(4): p. 704-715.
    16. O/'Brien, C.A., et al., A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 2007. 445(7123): p. 106-110.
    17. Dingli, D. and F. Michor, Successful Therapy Must Eradicate Cancer Stem Cells. STEM CELLS, 2006. 24(12): p. 2603-2610.
    18. Sharma, S.V., et al., A Chromatin-Mediated Reversible Drug-Tolerant State in Cancer Cell Subpopulations. Cell, 2010. 141(1): p. 69-80.
    19. Dick, J.E., Stem cell concepts renew cancer research. Blood, 2008. 112(13): p. 4793.
    20. Pardal, R., M.F. Clarke, and S.J. Morrison, Applying the principles of stem-cell biology to cancer. Nat Rev Cancer, 2003. 3(12): p. 895-902.
    21. Ponta, H., L. Sherman, and P.A. Herrlich, CD44: From adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol, 2003. 4(1): p. 33-45.
    22. Fargeas, C.A., et al., Characterization of Prominin-2, a New Member of the Prominin Family of Pentaspan Membrane Glycoproteins. Journal of Biological Chemistry, 2003. 278(10): p. 8586-8596.
    23. Swart, G.W.M., et al., Activated leukocyte cell adhesion molecule (ALCAM/CD166): Signaling at the divide of melanoma cell clustering and cell migration? Cancer and Metastasis Reviews, 2005. 24(2): p. 223-236.
    24. Munz, M., et al., The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene, 2004. 23(34): p. 5748-5758.
    25. Litvinov, S.V., et al., Epithelial Cell Adhesion Molecule (Ep-CAM) Modulates Cell–Cell Interactions Mediated by Classic Cadherins. The Journal of Cell Biology, 1997. 139(5): p. 1337.
    26. Baeuerle, P.A. and O. Gires, EpCAM (CD326) finding its role in cancer. Br J Cancer, 2007. 96(3): p. 417-423.
    27. Went, P.T.H., et al., Frequent EpCam protein expression in human carcinomas. Human Pathology, 2004. 35(1): p. 122-128.
    28. Osta, W.A., et al., EpCAM Is Overexpressed in Breast Cancer and Is a Potential Target for Breast Cancer Gene Therapy. Cancer Research, 2004. 64(16): p. 5818.
    29. Maetzel, D., et al., Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell Biol, 2009. 11(2): p. 162-171.
    30. Gires, O., C.A. Klein, and P.A. Baeuerle, On the abundance of EpCAM on cancer stem cells. Nat Rev Cancer, 2009. 9(2): p. 143-143.
    31. Lugli, A., et al., Prognostic impact of the expression of putative cancer stem cell markers CD133, CD166, CD44s, EpCAM, and ALDH1 in colorectal cancer. Br J Cancer, 2010. 103(3): p. 382-390.
    32. Du, L., et al., CD44 is of Functional Importance for Colorectal Cancer Stem Cells. Clinical Cancer Research, 2008. 14(21): p. 6751.
    33. Sanders, M.A. and A.P.N. Majumdar, Colon cancer stem cells: implications in carcinogenesis. Frontiers in bioscience (Landmark edition), 2011. 16: p. 1651-1662.
    34. Visvader, J.E. and G.J. Lindeman, Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer, 2008. 8(10): p. 755-768.
    35. Li, Z., CD133: a stem cell biomarker and beyond. Experimental Hematology & Oncology, 2013. 2: p. 17-17.
    36. Soeda, A., et al., Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1[alpha]. Oncogene, 2009. 28(45): p. 3949-3959.
    37. Hashimoto, O., et al., Hypoxia Induces Tumor Aggressiveness and the Expansion of CD133-Positive Cells in a Hypoxia-Inducible Factor-1α-Dependent Manner in Pancreatic Cancer Cells. Pathobiology, 2011. 78(4): p. 181-192.
    38. Ricci-Vitiani, L., et al., Identification and expansion of human colon-cancer-initiating cells. Nature, 2007. 445(7123): p. 111-115.
    39. Shmelkov, S.V., et al., CD133 expression is not restricted to stem cells, and both CD133(+) and CD133(–) metastatic colon cancer cells initiate tumors. The Journal of Clinical Investigation, 2008. 118(6): p. 2111-2120.
    40. Weidle, U.H., et al., ALCAM/CD166: cancer-related issues. Cancer Genomics Proteomics, 2010. 7(5): p. 231-43.
    41. Gilsanz, A., et al., ALCAM/CD166 adhesive function is regulated by the tetraspanin CD9. Cell Mol Life Sci, 2013. 70(3): p. 475-93.
    42. Weichert, W., et al., ALCAM/CD166 is overexpressed in colorectal carcinoma and correlates with shortened patient survival. Journal of clinical pathology, 2004. 57(11): p. 1160-1164.
    43. Dalerba, P., et al., Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(24): p. 10158-10163.
    44. Fletcher, J.I., et al., ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer, 2010. 10(2): p. 147-156.
    45. Zinzi, L., et al., ABC transporters in CSCs membranes as a novel target for treating tumor relapse. Frontiers in Pharmacology, 2014. 5: p. 163.
    46. Liu, Y.-S., et al., Lgr5 promotes cancer stemness and confers chemoresistance through ABCB1 in colorectal cancer. Biomedicine & Pharmacotherapy, 2013. 67(8): p. 791-799.
    47. Dean, M., ABC Transporters, Drug Resistance, and Cancer Stem Cells. Journal of Mammary Gland Biology and Neoplasia, 2009. 14(1): p. 3-9.
    48. Katayama, R., et al., Dofequidar fumarate sensitizes cancer stem-like side population cells to chemotherapeutic drugs by inhibiting ABCG2/BCRP-mediated drug export. Cancer Science, 2009. 100(11): p. 2060-2068.
    49. Ginestier, C., et al., ALDH1 Is a Marker of Normal and Malignant Human Mammary Stem Cells and a Predictor of Poor Clinical Outcome. Cell Stem Cell, 2007. 1(5): p. 555-567.
    50. Duester, G., Families of retinoid dehydrogenases regulating vitamin A function: production of visual pigment and retinoic acid. Eur J Biochem, 2000. 267(14): p. 4315-24.
    51. Chute, J.P., et al., Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proc Natl Acad Sci U S A, 2006. 103(31): p. 11707-12.
    52. Huang, E.H., et al., Aldehyde Dehydrogenase 1 Is a Marker for Normal and Malignant Human Colonic Stem Cells (SC) and Tracks SC Overpopulation during Colon Tumorigenesis. Cancer Research, 2009. 69(8): p. 3382.
    53. Marcato, P., et al., Aldehyde dehydrogenase: Its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle, 2011. 10(9): p. 1378-1384.
    54. Chen, J., et al., A restricted cell population propagates glioblastoma growth following chemotherapy. Nature, 2012. 488(7412): p. 522-526.
    55. 王欣耀, 以深度學習方法探索預測結腸癌復發的預後標記, in 電機工程學系. 2016, 國立清華大學. p. 29.
    56. Wielenga, V.J.M., et al., Expression of CD44 in Apc and TcfMutant Mice Implies Regulation by the WNT Pathway. The American Journal of Pathology, 1999. 154(2): p. 515-523.
    57. Horst, D., et al., Prognostic Significance of the Cancer Stem Cell Markers CD133, CD44, and CD166 in Colorectal Cancer. Cancer Investigation, 2009. 27(8): p. 844-850.
    58. Huh, J.W., et al., Expression of standard CD44 in human colorectal carcinoma: Association with prognosis. Pathology International, 2009. 59(4): p. 241-246.
    59. Langan, R.C., et al., A Pilot Study Assessing the Potential Role of non-CD133 Colorectal Cancer Stem Cells as Biomarkers. Journal of Cancer, 2012. 3: p. 231-240.
    60. Herlyn, M., et al., Colorectal carcinoma-specific antigen: detection by means of monoclonal antibodies. Proceedings of the National Academy of Sciences of the United States of America, 1979. 76(3): p. 1438-1442.
    61. Patriarca, C., et al., Epithelial cell adhesion molecule expression (CD326) in cancer: A short review. Cancer Treatment Reviews, 2012. 38(1): p. 68-75.
    62. Schmidt, M., et al., Prognostic Effect of Epithelial Cell Adhesion Molecule Overexpression in Untreated Node-Negative Breast Cancer. Clinical Cancer Research, 2008. 14(18): p. 5849.
    63. Spizzo, G., et al., High Ep-CAM Expression is Associated with Poor Prognosis in Node-positive Breast Cancer. Breast Cancer Research and Treatment, 2004. 86(3): p. 207-213.
    64. Brunner, A., et al., EpCAM is predominantly expressed in high grade and advanced stage urothelial carcinoma of the bladder. Journal of Clinical Pathology, 2008. 61(3): p. 307.
    65. Lugli, A., et al., Prognostic impact of the expression of putative cancer stem cell markers CD133, CD166, CD44s, EpCAM, and ALDH1 in colorectal cancer. British Journal of Cancer, 2010. 103(3): p. 382-390.
    66. Gosens, M.J.E.M., et al., Loss of membranous Ep-CAM in budding colorectal carcinoma cells. Mod Pathol, 2007. 20(2): p. 221-232.
    67. Wahab, S.M.R., et al., The Identifications and Clinical Implications of Cancer Stem Cells in Colorectal Cancer. Clinical Colorectal Cancer, 2017. 16(2): p. 93-102.
    68. Zhou, F.E.I., et al., Expression and prognostic value of tumor stem cell markers ALDH1 and CD133 in colorectal carcinoma. Oncology Letters, 2014. 7(2): p. 507-512.
    69. WEIDLE, U.H., et al., ALCAM/CD166: Cancer-related Issues. Cancer Genomics - Proteomics, 2010. 7(5): p. 231-243.
    70. Tachezy, M., et al., Activated leukocyte cell adhesion molecule (CD166)—Its prognostic power for colorectal cancer patients. Journal of Surgical Research, 2012. 177(1): p. e15-e20.
    71. Langan, R.C., et al., Colorectal Cancer Biomarkers and the Potential Role of Cancer Stem Cells. Journal of Cancer, 2013. 4(3): p. 241-250.
    72. Deng, S., et al., Distinct Expression Levels and Patterns of Stem Cell Marker, Aldehyde Dehydrogenase Isoform 1 (ALDH1), in Human Epithelial Cancers. PLoS ONE, 2010. 5(4): p. e10277.
    73. Steinbach, D. and O. Legrand, ABC transporters and drug resistance in leukemia: was P-gp nothing but the first head of the Hydra? Leukemia, 2007. 21(6): p. 1172-1176.
    74. Hang, D., et al., Prognostic value of the stem cell markers CD133 and ABCG2 expression in esophageal squamous cell carcinoma. Diseases of the Esophagus, 2012. 25(7): p. 638-644.
    75. Hu, J., et al., Expression of the cancer stem cell markers ABCG2 and OCT-4 in right-sided colon cancer predicts recurrence and poor outcomes. Oncotarget, 2017. 8(17): p. 28463-28470.
    76. Wicker, C.A. and T. Izumi, Analysis of RNA expression of normal and cancer tissues reveals high correlation of COP9 gene expression with respiratory chain complex components. BMC Genomics, 2016. 17(1): p. 983.
    77. Zhang, S., et al., CSN5 promotes renal cell carcinoma metastasis and EMT by inhibiting ZEB1 degradation. Biochemical and Biophysical Research Communications, 2017. 488(1): p. 101-108.
    78. Zhang, X.-C., et al., Roles for CSN5 in control of p53/MDM2 activities. Journal of Cellular Biochemistry, 2008. 103(4): p. 1219-1230.
    79. Adler, A.S., et al., Genetic regulators of large-scale transcriptional signatures in cancer. Nature genetics, 2006. 38(4): p. 421-430.
    80. Korzeniewski, N., M. Hohenfellner, and S. Duensing, CAND1 Promotes PLK4-Mediated Centriole Overduplication and Is Frequently Disrupted in Prostate Cancer. Neoplasia, 2012. 14(9): p. 799-806.
    81. Murata, T., et al., miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression. Prostate Cancer Prostatic Dis, 2010. 13(4): p. 356-61.
    82. Salon, C., et al., Altered pattern of Cul-1 protein expression and neddylation in human lung tumours: relationships with CAND1 and cyclin E protein levels. The Journal of Pathology, 2007. 213(3): p. 303-310.
    83. Lowenstein, E.J., et al., The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell, 1992. 70(3): p. 431-442.
    84. Lopez-Ilasaca, M., et al., Linkage of G Protein-Coupled Receptors to the MAPK Signaling Pathway Through PI 3-Kinase γ. Science, 1997. 275(5298): p. 394.
    85. Wilhelm, S.M., et al., BAY 43-9006 Exhibits Broad Spectrum Oral Antitumor Activity and Targets the RAF/MEK/ERK Pathway and Receptor Tyrosine Kinases Involved in Tumor Progression and Angiogenesis. Cancer Research, 2004. 64(19): p. 7099.
    86. Kolch, W., Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochemical Journal, 2000. 351(2): p. 289.
    87. Dankort, D., et al., Grb2 and Shc Adapter Proteins Play Distinct Roles in Neu (ErbB-2)-Induced Mammary Tumorigenesis: Implications for Human Breast Cancer. Molecular and Cellular Biology, 2001. 21(5): p. 1540-1551.
    88. Chang, W., et al., Gene expression profiling-derived immunohistochemistry signature with high prognostic value in colorectal carcinoma. Gut, 2014. 63(9): p. 1457.
    89. Aghazadeh, Y. and V. Papadopoulos, The role of the 14-3-3 protein family in health, disease, and drug development. Drug Discovery Today, 2016. 21(2): p. 278-287.
    90. Aitken, A., 14-3-3 proteins: A historic overview. Seminars in Cancer Biology, 2006. 16(3): p. 162-172.
    91. Tzivion, G., et al., 14-3-3 proteins as potential oncogenes. Seminars in Cancer Biology, 2006. 16(3): p. 203-213.
    92. Yang, H.-Y., et al., 14-3-3σ Positively Regulates p53 and Suppresses Tumor Growth. Molecular and Cellular Biology, 2003. 23(20): p. 7096-7107.
    93. O'Dwyer, D., et al., The Proteomics of Colorectal Cancer: Identification of a Protein Signature Associated with Prognosis. PLOS ONE, 2011. 6(11): p. e27718.
    94. Neal, C.L. and D. Yu, 14-3-3ζ as a prognostic marker and therapeutic target for cancer. Expert opinion on therapeutic targets, 2010. 14(12): p. 1343-1354.
    95. Li, N., et al., Overexpression of 14-3-3θ promotes tumor metastasis and indicates poor prognosis in breast carcinoma. Oncotarget, 2014. 5(1): p. 249-257.
    96. Ni, C., et al., Prognostic Value of CD166 Expression in Cancers of the Digestive System: A Systematic Review and Meta-Analysis. PLOS ONE, 2013. 8(8): p. e70958.

    QR CODE