一步圓石移動(pebbling move)定義為將兩個圓石從一個點上拿起,丟掉一個,並將另一個放到相鄰的點上。一個圖G的配置或分配(configuration or distribution) C是一個從V(G)映至非負整數的函數。我們讓C(v)是點v所被分配的圓石數,所以G上的圓石總數為v∈V(G)C(v)。若一個配置C讓我們藉由重覆的(若有需要)圓石移動移動至少一個圓石到任意一點上,則C被稱為一個G的圓石分配(pebbling)。G的最優圓石分配數(optimal pebbling number) f’(G)是一個使用最少圓石的G的圓石分配之圓石總數。
有許多方法能處理這個問題,例如機率[6]、錯誤更正碼[9]或特殊類型的控制集[6]。此篇論文主要關心兩個圖相乘的最優圓石分配數。我們得到了f’(P3 × Pn)、f’(Q3) = f’(P2 × Q2) = f’(P2 × C4)、f’(Q4) = f’(P2 × Q3)和f’(Q5) = f’(P2 × Q4)的值。對於一般化的圖,給了一些上界。我們也提供了不同的方法證明f’(Pn)及f’(P2 × Pn)的值。
[1] D. P. Bunde, E. W. Chambers, D. Cranston, K. Milans and D. B. West, Pebbling
and optimal pebbling in graphs, J. Graph Theory 57, 2008, 215-238.
[2] F. R. K. Chung, Pebbling in hypercubes, SIAM J. Disc. Math, Vol. 2, no. 4,
1989, 467-472.
[3] T. A. Clarke, R. A. Hochberg and G. H. Hurlbert, Pebbling in diameter two
graphs and products of paths, J. Graph Theory, 25, 1997, no. 2, 119-128.
[4] R. Feng and J. Y. Kim, Graham's pebbling conjecture on product of complete
bipartite graphs, Sci. China, Ser. A 44, 2001, 817-822.
[5] R. Feng and J. Y. Kim, Pebbling numbers of some graphs, Sci. China, Ser. A 45,
2002, 470-478.
[6] H. L. Fu, K.C. Huang and C. Lin. Shiue, A note on optimal pebbling of hyper-
cubes, J. Combin. Optim., Issue 4, Vol. 25, May 2013, 536-542
[7] D. S. Herscovici and A. Higgins, The pebbling number of C5C5, Discrete Math.
187, 1998, 123-135.
[8] D. S. Herscovici, Graham's pebbling conjecture on products of cycles, J. Graph
Theory 42, 2003, 141-154.
[9] D. S. Herscovici, B. D. Hester and G. H. Hurlbert, Optimal pebbling in products
of graphs, Australasian Journal of Combinatorics, 50, 2011, 3-24.
[10] D. S. Herscovici, Using error-correcting codes to construct solvable pebbling
distributions, Hamden, 2012.
[11] P. Lemke and D. Kleitman, An addition theorem on the integers modulo n, J.
Number Theory, 31, 1989, 335-345.
[12] F. J. MacWillians and N. J. A. Sloane, The theory of error-correcting codes,
North-Holland, New York, 1977.
[13] D. Moews, Pebbling graphs, J. Combin. Theory, Ser. B 55, 1992, 244-252.
[14] D. Moews, Optimally pebbling hypercubes and powers, Discrete Math.190, 1998,
271-276.
[15] J. Muntza, S. Narayana, N. Streibb and K. V. Ochten, Optimal Pebbling of
Graphs, Discrete Mathematics 307, 2007, 2315-2321.
[16] L. Pachter, H. Snevily and B. Voxman, On pebbling graphs, Congr Numer 107,
1995, 65-80.
[17] C. L. Shiue, Optimally pebbling graphs, Ph. D. Dissertation, Department of
Applied Mathematics, National Chiao Tung University, 1999, Hsin chu, Taiwan.
[18] D. B. West, Introduction to graph theory, Second Edition, Prentice Hall, Upper
Saddle River, 2001.