簡易檢索 / 詳目顯示

研究生: 鍾仁傑
Ren-Jei Chung
論文名稱: 光激發光氫氧基磷灰石生物陶瓷
Photo-luminescent hydroxyapatite bioceramics
指導教授: 金重勳
Tsung-Shune Chin
周鳳英
Fong-In Chou
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 110
中文關鍵詞: 氫氧基磷灰石光激發光膠原蛋白生物模擬基因傳遞
外文關鍵詞: hydroxyapatite, photo-luminescent, collagen, bio-mimetic, gene delivery
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來越越來多的研究結合微機電系統與生醫晶片,並將其應用在生物科技與生醫檢測領域,甚而嚐試植入人體,因此在這些矽裝置上製備適當的鍍層以避免免疫反應將是重要的課題。此外,發光材料在基因傳遞與檢測方面亦扮演重要的角色,本論文旨在製備具生物相容性的光激發光氫氧基磷灰石 (HAp) 鍍層與高分子複合材顆粒 (org-HAp),期能應用在生物光電領域。
    在第一部份的研究中,成功於經親水處理的矽 (111) 及 (100) 基板上製備出氫氧基磷灰石鍍層,所使用的起始物為簡單的過飽和鈣離子與磷酸根溶液,為一室溫下的生物模擬製程。其初鍍率為 25 nm/h,接著迅速成長 (325 nm/h),最終膜厚可達約 8 μm。霍式轉換紅外光譜儀 (FTIR) 與化學分析電子光譜儀 (ESCA) 與X光繞射儀 (XRD) 的量測結果顯示結晶性的 HAp 鍍層可於短時間生成,原子力顯微鏡 (AFM) 掃描式電子顯微鏡 (SEM) 的觀察則顯示 HAp 為波浪狀的連續鍍層。
    第二部份分別使用三種高分子作為模板:膠原蛋白、PEG-PLGA 二團聯共聚物及 PEG-PLGA-PEG 三團聯共聚物,經過一生物模擬的自組裝過程製備 org-HAp 複合粉末, 結果顯示經高分子調控的 org-HAp 具有較小的結晶尺度 (~23nm),純 HAp 粉末則約為 30nm。FTIR與XRD 的量測顯示 org-HAp均具氫氧基磷灰石結晶相,穿透式 (TEM) 及掃描式 (SEM) 電子顯微鏡的觀察顯示 org-HAp 呈奈米級片狀結晶。熱重分析 (TG-DTA) 與固態核磁共振 (SS-NMR) 的量測結果證實 org-HAp 複合材中高分子確實存在,並對磷原子的自旋造成影響。
    第三部份主要在探討製備出的 HAp 鍍層與複合粉末之光激發光 (PL) 性質。研究中以 325 nm 之 He-Cd 雷射作為激發光源,結果顯示在矽基板上的 HAp 鍍層發出 463 nm 及 513 nm 之光激發光,其發光強度隨厚度增厚而增加。在 org-HAp 複合粉末中,膠原蛋白-HAp (col-HAp) 粉末發射出最強的光激發光 (415 nm),而膠原蛋白本身則放出週期很短之 410 nm 螢光。本研究並使用 col-HAp 作為基因載體,並作臨場細胞影像觀察,實驗中使用 HEK-293 細胞株作綠色螢光基因 (GFP) 轉殖 (transfection) 試驗,並以商業產品 LipofectamineTM Plus 作為對照組,結果顯示 col-HAp 有極低的細胞毒性,可成功轉殖基因,並可在紫外線光源下觀察到其臨場影像,極有潛力應用在生物光電領域。


    In the recent years, devices of micro-electro-mechanical systems (MEMS) or biochips for diagnosis to be implanted into human body require a biocompatible and protective coating to avoid inflammatory effects. Besides, photo-luminescent agents are playing important roles in gene transfection, diagnoses and bio-optoelectronics.
    In the first part of this dissertation, I had developed a method to deposit a bioactive hydroxyapatite (HAp) layer onto pretreated hydrophilic Si (111) and Si (100) from supersaturated solutions of Ca2+ and PO43- ions with a pH value 7.4 at 298K. The deposition started with an initial uniform deposit at a low rate around 25 nm/h. Growth then took place predominantly along the direction normal to the substrate through in-plane nucleation of multiple embryos at a high rate around 325 nm/h. The deposition rate increased with increasing time duration, attaining a maximum at a thickness around 8 μm, and then decreased. Fourier transform infrared spectrometer (FTIR) and X-ray photoelectron spectroscopy (XPS) indicated the presence of HAp with typical chemical states. X-ray diffraction pattern of a 4-day deposit showed the direct formation of crystalline HAp corroborating with the XPS results. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) observations showed the wavy coating on Si (100).
    In the second part, three polymers including collagen, diblock PEG-PLGA copolymer and triblock PEG-PLGA-PEG copolymer were utilized for biomimetic hydroxyapatite preparation. Average crystallite sizes of precipitated HAp from polymer solutions were estimated from XRD patterns to be ca. 23 nm for those in collagen-HAp hybrids and 30 nm for those without polymer addition. Transmission electron microscopy (TEM) and SEM micrographs showed the organic macromolecules induced HAp has regular plate-like shapes and nano-sized structure. Solid state NMR revealed polymer incorporation in HAp crystal. The hybrids containing these biodegradable polymers can be processed to various morphologies for tissue engineering applications.
    In the third part, photo-luminescent (PL) properties of prepared HAp coatings and composite powders were studied. Color-center-doped HAps were prevalently used as fluorescent materials. HAp based PL material might be an ideal agent for bio-imaging. The PL spectra using a 325 nm He-Cd laser source showed that the as-prepared HAp coatings on silicon substrate emitted phosphorescent light peaking at 463 nm and 513 nm. Intensity of emission was greater with increasing coating thickness. Collagen alone emitted brighter fluorescence peaked around 410 nm but was quickly quenched, while collagen-HAp composite powders (col-HAp) emitted sustaining PL light peaking around 415 nm. In vitro transfection results of HEK-293 cell showed that col-HAp is an efficient gene delivery agent for GFP-containing plasmid without cyto-toxicity, and could be easily differentiated under an optical microscope. The developed photo-luminescent bioceramics are of great potential in bio-optoelectronics.

    Table of Contents (目錄) Chinese abstract (中文摘要) Abstract (英文摘要) Acknowledgement (誌謝) List of abbreviations and symbols (縮寫與符號) Table of contents (目錄) List of tables (表目錄) Figure captions (圖目錄) Section I Chinese adaption (中文本) 第一章 緒論 第二章 文 獻 回 顧 第三章 實 驗 方 法 第四章 結 果 與 討 論 第五章 結 論 Section II English adaption Chapter 1 Introduction 1.1 Overviews 1.2 Biomaterials and bioceramics 1.3 Motivations and objectives Chapter 2 Literature review 2.1 Fundamentals of HAp 2.2 Preparation methods of HAp coating and bulk 2.3 Concepts of bio-mimetic processes 2.4 Collagen and biological polymers 2.5 Self-assembly and nano-technology 2.6 Photo-luminescent materials and bio-imaging 2.7 Gene delivery and transfection Chapter 3 Experimental procedures 3.1 Experimental flowchart 3.2 Materials and methods 3.2.1 Substrate preparations 3.2.2 Preparation of HAp coatings 3.2.3 Preparation of HAp powders 3.2.4 Preparation of GFP-containing plasmid 3.2.5 Cultivation and keeping of HEK-293 cell 3.2.6 Preparation of LipofectamineTM Plus (or org-HAp) with gene and transfection procedures 3.3 Measurements and analyses 3.3.1 pH value monitoring 3.3.2 AFM observations 3.3.3 FTIR spectroscopy 3.3.4 ICP-AES analyses 3.3.5 XRD analyses 3.3.6 TGA/DTA analyses 3.3.7 FE-SEM observations 3.3.8 XPS analyses 3.3.9 TEM analyses 3.3.10 Solid-sate MAS NMR analyses 3.5.11 PL analyses 3.3.12 UV/visible observation of materials and cells Chapter 4 Results and discussion 4.1 HAp coatings on silicon substrates 4.1.1 Phenomena monitoring during preparation HAp coatings on Si (111 4.1.2 Thickness and deposition rate during preparation HAp coatings on Si (111 4.1.3 AFM surface characterization of HAp coatings on Si (111) 4.1.4 FE-SEM morphology observation of HAp coatings on Si (100) 4.1.5 Crystallite phase identification through XRD 4.1.6 FTIR observations 4.1.7 XPS characterization of the coatings 4.1.8 PL phenomena investigation of the coatings 4.2 HAp and org-HAp powders 4.2.1 TG/DTA analyses of the synthesized powders 4.2.2 FE-SEM morphology observation 4.2.3 Crystallite phase identification through XRD 4.2.4 Phase transformation after thermal treatment 4.2.5 Atomic characterization by ICP-AES 4.2.6 FTIR observations 4.2.7 TEM characterization of HAp powders 4.2.8 Solid-sate MAS NMR investigation of the HAp powders 4.2.9 PL phenomena investigation of the powders 4.3 In vitro transfection tests 4.3.1 Observation of the HAp powders under UV/visible light 4.3.2 Transfection results of different agents Chapter 5 Conclusions Tables Figures References Publication list

    1.Ratner BD, Hoffman AS, Schoen FJ and Lemons JE. Biomaterals Science: An Introduction to Materials In Medicine. San Diego: Academic Press, 2nd edition, 2004.
    2.Parks JB and Lakes RS. Biomaterials-An Introduction. 2nd edition, Prenum Press, New York, 1979.
    3.Hon PN. The application of biomaterial in medical engineering. J Biomed Eng Soc,4, 23, 1984.
    4.Williams DF. Definitions in biomaterials. Proceeding of a Consensus Conference of the European Society for Biomaterials, Chester, England, March 3-5, 4, Elsevier, New York, 1986.
    5.Wintermantel E and Ha SW. Biokompatible Werkstoffe und Bauweisen. Springer, Berlin, 1996.
    6.Shackelford JF. Bioceramics-Advanced ceramics. Vol. 1, Gordin and Breach Science Publishers, 1999.
    7.Hench LL and Wilson J. An Introduction to Bioceramics. World Scientific Publishing Co. Pte. Ltd, Singapore, 1993
    8.Andreoni A. Time-resolved luminescence spectroscopy of photosensitizers of biomedical interest. Photochem Photobiol, 52(2), 423-430, 1990.
    9.Rice BW, Cable MD. And Nelson M.B. In vivo imaging of light-emitting probes. J Biomed Opt, 6(4), 432-440, 2001.
    10.Bornhop DJ, Griffin JMM., Goebel TS, Sudduth MR, Bell B and Motamedi M. Luminescent lanthanide chelate contrast agents and detection of lesions in the hamster oral cancer model. Appl Spectrosc , 57(10), 1216-1222, 2003.
    11.Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J and Nakayama A, et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol, 22(1), 93-97, 2004.
    12.Doat A, Pelle F and Lebugle A. Europium-doped calcium pyrophosphates: Allotropic forms and photo luminescent properties. J Solid State Chem, 178(7), 2354-2362, 2005.
    13.Doat A, Fanjul M, Pelle F, Hollande E and Lebugle A. Europium-doped bioapatite: a new photostable biological probe, internalizable by human cells, Biomaterials, 24(19), 3365-3371, 2003.
    14.Doat A, Pelle F, Gardant N and Lebugle A. Synthesis of luminescent bioapatite nanoparticles for utilization as a biological probe. J Solid State Chem, 177(4-5), 1179-1187, 2004.
    15.Jarcho M. Calcium-phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat R, 157, 259-278, 1981.
    16.Chung RJ, Hsieh MF, Huang KC, Perng LH, Chou FI and Chin TS. Anti-microbial hydroxyapatite particles synthesized by a sol-gel route. J Sol-Gel Sci Techn, 33(2), 229-39, 2005.
    17.Chung RJ, Hsieh MF, Huang CW, Perng LH, Wen HW and Chin TS. Antimicrobial effects and human gingival biocompatibility of hydroxyapatite sol-gel coatings. J Biomed Mater Res B, 76B(1), 169-178, 2006.
    18.Yang YW and Yang JC. Calcium phosphate as a gene carrier: electron microscopy. Biomaterials, 18, 213-217, 1997.
    19.Feldmann C, Justel T, Ronda CR and Schmidt PJ. Inorganic luminescent materials: 100 years of research and application. Adv Funct Mater, 13(7), 511-516, 2003.
    20.Ternane R, Cohen-Adad MT, Panczer G, Goutaudier C, Dujardin C and Boulon G, et al. Structural and luminescent properties of new Ce3+ doped calcium borophosphate with apatite structure. Solid State Sci, 4(1), 53-59, 2002.
    21.Zollfrank C, Muller L, Greil P and Muller FA. Photoluminescence of annealed biomimetic apatites. Acta Biomater, 1(6), 663-669, 2005.
    22.Liu Q, Ding J, Mante FK, Wunder SL and Baran GR. The role of surface functional groups in calcium phosphate nucleation on titanium foil: a self-assembled monolayer technique. Biomaterials, 23, 3103-3111, 2002.
    23.Fraser Rdb, Macrae TP, Miller A and Suzuki E. Molecular-conformation and packing in collagen fibrils. J Mol Biol, 167(2), 497-521, 1983.
    24.Georgiou E, Theodossiou T, Hovhannisyan V, Politopoulos K, Rapti GS and Yova D. Second and third optical harmonic generation in type I collagen, by nanosecond laser irradiation, over a broad spectral region. Opt Commun, 176(1-3), 253-260, 2000.
    25.Yova D, Hovhannisyan V and Theodossiou T. Photochemical effects and hypericin photosensitized processes in collagen. J Biomed Opt, 6(1), 52-57, 2001.
    26.Theodossiou T, Rapti GS, Hovhannisyan V, Georgiou E, Politopoulos K and Yova D. Thermally induced irreversible conformational changes in collagen probed by optical second harmonic generation and laser-induced fluorescence. Laser Med Sci, 17(1), 34-41, 2002.
    27.Albee F H. Studies in Bonegrowth-triple Calcium Phosphate as a Stimulus to Osteogenesis. Ann Surg, 71, 32, 1920.
    28.Hench LL and Wilson J, An Introduction to bioceramics. World Scientific Publishing Co. Ltd., River Edge, NJ, 1-24, 1993.
    29.Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc, 74 (7) , 1487-510, 1991.
    30.Frayssinet P, Trouillet JL, Rouquet N, Azimus E and Autefage A. Osseointegration of macroporous calcium-phosphate ceramics having a different chemical-composition, Biomaterials, 14, 423-429, 1993.
    31.Kanazawa T. Inorganic Phosphate Materials. Elsevier Science Publishers, Amsterdam, the Netherlands, 1989.
    32.Posner AS, Perloff A and Dioro AF. Refinement of the hydroxyapatite structure, Acta Cryst, 11, 308-310, 1958.
    33.Posner AS, Perloff A and Dioro AF. Refinement of the hydroxyapatite structure. Acta Cryst, 11, 308-310, 1958.
    34.Heijigers HJ, Driessens FC and Verbeeck RM. Lattice parameters and cations distribution of solid solutions of calcium and strontium hydroxyapatite. Calcif Tiss Int, 29,127-131,1979.
    35.Verbeeck RMH, Driessens FCM, Heijligers HJM, Lassuyt CL and Vrolijk JWGA. Lattice-parameters and cation distribution of solid-solutions of calcium and lead hydroxyapatite. Calcif Tiss Int, 33, 243-247, 1981.
    36.Kay MI, Young RA and Posner AS. Crystal structure of hydroxyapatite. Nature, 204, 1050-1052, 1964.
    37.Aoki H. Medical application of hydroxyapatite, Takayama Press, St. Louis, 1994.
    38.McClure FJ and Fluorine. Ash, calcium and phosphorous in human teeth. J Dent Res, 29, 315, 1950.
    39.Ducheyne P, Radin S, Heughebaert M and Heughebaert JC. Calcium phosphate coatings on metallic porous surfaces. The effect of structure and composition on the electrophoretic deposition, vaccum sintering, and in vitro dissolution behavior. Biomaterials, 11, 244-254, 1990.
    40.Ohtsuka O, Matsuura M, Chida N, Yoshinari M, Sumii T and Derand T. Formation of hydroxyapatite on pure titanium substrates by ion beam dynamic mixing. Surf Coat Tech, 65, 224-230, 1994.
    41.Yamashita K, Arashi T, Kitagaki K, Yamada S, Umegaki T and Ogawa K. Preparation of apatite thin films through rf-sputtering from calcium phosphate glasses. J Am Cer Soc, 77, 2401-2407, 1994.
    42.Cotell CM. Pulsed-laser deposition and processing of biocompatible hydroxyapatite thin-films. Appl Surf Sci, 69, 140-148, 1993.
    43.Chung RJ, Hsieh MF, Panda RN and Chin TS. Hydroxyapatite layers deposited from aqueous solutions on hydrophilic silicon substrate. Surf Coat Tech, 165, 194-200, 2003.
    44.Ducheyne P, Radin S, Heughebaert M and Heughebaert JC. Calcium phosphate coatings on metallic porous surfaces. The effect of structure and composition on the electrophoretic deposition, vaccum sintering, and in vitro dissolution behavior. Biomaterials, 11, 244-254, 1990.
    45.Brendel T, Engel A and Ruessel C. Hydroxyapatite coatings by polymeric route. J Mater Sci-Mater M, 3, 175-179, 1992.
    46.Ramachandra RR, Roopa HN and Kannan TS. Solid state synthesis and thermal stability of HAP and HAP-β-TCP composite ceramic powders. J Mater Sci-Mater M, 8, 511-518, 1997.
    47.Tanahashi M, Yao T, Kokubo T, Minoda M, Miyamoto T, Nakamura T and Yamamuro T. Apatite coated on organic polymers by biomimetic process: improvement of the adhesion to substrate by HCl treatment. J Mater Sci-Mater M, 6, 319-326, 1995.
    48.TenHuisen KS and Brown PW. Phase evolution during the formation of alpha-tricalcium phosphate. J Am Ceram Soc, 82(10), 2813-2818, 1999.
    49.Yokogawa Y, Kawamoto Y, Toriyama M, Suzuki T and Kawamura S. Tricalcium phosphate coating on zirconia using calcium metaphosphate and tetracalcium phosphate. J Ceram Soc Jpn, 99, 28-31, 1991.
    50.Famery R, Richard N and Boch P. Preparation of alpha- and beta- tricalcium phosphate ceramics, with and without magnesium addition. Ceram Int, 20(5), 327-336, 1994.
    51.Jarcho M, Salsbury RL, Thomas MB and Doremus RH. Synthesis and fabrication of alpha-tricalcium phosphate (whitlockite) ceramics for potential prosthetic applications. J Mater Sci, 14, 142-50, 1979.
    52.Akao M, Aoki H, Kato K and Sato A. Dence Polycrystalline beta-tricalcium phosphate for prosthetic applications. J Mater Sci, 17, 343-346, 1982.
    53.Mortier A, Lemaitre J, Rodrique L and Rouxhet PG. Synthesis and thermal behavior of well-crystallized calcium-deficient phosphate apatite. J Solid State Chem, 78, 215-219, 1989.
    54.Itatani K, Nishioka T, Seike S, Howell FS, Kishioka A and Kinoshita M. Sinterability of beta-calcium orthophosphate powder prepared by spray-pyrolysis. J Am Ceram Soc, 77(3), 801-805, 1994.
    55.Yubao L, Klein CPAT, Xingdong Z and DeGroot K. Formation of a bone apatite-like layer on the surface of porous hydroxyapatite ceramics. Biomaterials, 15, 835-841, 1994.
    56.Slosarczyk A, Stobierska E, Paszkiewicz Z and Gawlicki M. Calcium phosphate materials prepared from pricipitates with various calcium phosphorus molar ratios. J Am Ceram Soc, 79(10), 2539-2544, 1996.
    57.Narasaraju TSB and Phebe DE. Review some physico-chemical aspects of hydroxylapatite. J Mater Sci, 31, 1-21, 1996.
    58.Tas AC, Korkusus F, Timucin M and Akkas N. An investigation of the chemical synthesis and high-temperature sintering behavior of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics. J Mater Sci-Mater M, 8, 91-96, 1997.
    59.Vallet-Regi M, Rodriguez-Lorenzo LM and Salinas AJ. Synthesis and characterization of calcium deficient apatite. Solid State Ionic, 101-103, 1279-1285, 1997.
    60.Kivrak N and Tas AC. Synthesis of calcium hydroxyapatite-tricalcium phosphate (HA-TCP) composite bioceramic powders and their sintering behavior. J Am Ceram Soc, 81(9), 2245-2252, 1998.
    61.Tas AC. Combination synthesis of calcium phosphate bioceramics powders. J Europ Ceram Soc, 20, 2389-2394, 2000.
    62.Engin NO and Tas AC. Preparation of porous Ca10(PO4)6(OH)2 and beta-Ca3(PO4)2 bioceramics. J Am Ceram Soc, 83(7), 1581-1584, 2000.
    63.Gibson IR, Rehman I, Best SM and Bonfield W. Characterization of the transformation from calcium-deficient apatite to beta-tricalcium phosphate. J Mater Sci-Mater M, 11, 533-539, 2000.
    64.Arends J, Christoffersen J, Christoffersen MR, Eckert H, Fowler BO, Heughebaert JC, Nancollas GH, Yesinowski JP and Zawacki SJ. A calcium hydroxyapatite precipitated from an aqueous solution: An international multimethod analysis. J Crystal Growth, 84, 515-532, 1987.
    65.Elliott JC. Structure and chemistry of the apatites and other calcium orthophosphates. Studies in Inorganic Chemistry, Vol. 18, Elsevier Amsterdam, 1994.
    66.Watson KE, Tenhuisen KS and Brown PW. The formation of hydroxyapatite-calcium polyacrylate composites. J Mater Sci-Mater M, 10(4), 205-213, 1999.
    67.Yokogawa Y, Kawamoto Y, Toriyama M, Suzuki T and Kawamura S. Tricalcium phosphate coating on zirconia using calcium metaphosphate and tetracalcium phosphate. J Ceram Soc Jpn, 99, 28-31, 1991
    68.Mann S and Weiner S. Biomineralization: structural questions at all length scales (editorial). J Struct Biol, 126, 179-181, 1999.
    69.Lowenstam HA and Weiner S. On Biomineralization. Oxford University Press, New York, 1989.
    70.Mann S, Webb J and Williams JPR. Biomineralization: chemical and biochemical perspectives. Weinheim, Federal Republic of Germany, New York, 1989.
    71.Heuer HA, Fink DJ, Laraia VJ, Arias JL, Calvert PD, Kendall K, Messing GL, Blackwell J, Rieke PC, Thompson DH, Wheeler AP, Veis A and Caplan AI. Innovative materials processing strategies: a biomimetic approach. Science, 255, 1098-1105, 1992.
    72.DeGroot K. Bioceramics of Calcium Phosphate. CRC Press, Inc, Florida, 1983.
    73.Li PJ, Kangasniemi I, DeGroot K and Kokubo T. Bonelike hydroxyapatite induction by a gel-derived titania on a titanium substrate. J Am Ceram Soc, 77(5), 1307-1312, 1994.
    74.Mucalo MR, Toriyama M, Yokogawa Y, Suzuki T, Kawamoto Y, Nagata F and Nishizawa K. Growth of calcium-phosphate on ion-exchange resins pre-saturated with calcium or hydrogenophosphate ions - an SEM/EDX and xps study. J Mater Sci-Mater M, 6(7), 409-419, 1995.
    75. Kim HM, Miyaji F and Kokubo T. Preparation of functionally graded bioactive titanium and its alloys by chemical treatment. J JPN I MET, 62 (11), 1102-1107, 1998.
    76.Liu Q, Ding J, Mante FK, Wunder SL and Baran GR. The role of surface functional groups in calcium phosphate nucleation on titanium foil: a self-assembled monolayer technique. Biomaterials, 23(15), 3103-3111, 2002.
    77.Stupp SI and Braun PV. Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors. Science, 277(5330), 1242-1248, 1997.
    78.Khopade AJ, Khopade S and Jain NK. Development of hemoglobin aquasomes from spherical hydroxyapatite cores precipitated in the presence of half-generation poly(amidoamine) dendrimer. Int J Pharm, 241(1), 145-154, 2002.
    79.Tang RK, Hass M, Wu WJ, Gulde S and Nancollas GH. Constant composition dissolution of mixed phases II. Selective dissolution of calcium phosphates. J Colloid Interf Sci, 260(2), 379-384, 2003.
    80.Rhee SH, Suetsugu Y and Tanaka J. Biomimetic configurational arrays of hydroxyapatite nanocrystals on bio-organics. Biomatierals, 22(21), 2843-2847, 2001.
    81.Yang YW and Yang JC. Calcium phosphate as a gene carrier: Electron microscopy. Biomaterials, 18(3), 213-217, 1997.
    82.Spanos N, Deimede V and Koutsoukos PG. Functionalization of synthetic polymers for potential use as biomaterials: selective growth of hydroxyapatite on sulphonated polysulphone. Biomaterials, 23(3), 947-953, 2002.
    83.Fraser RDB, Macrae TP, Miller A and Suzuki E. Molecular-conformation and packing in collagen fibrils. J Mol Biol, 167(2), 497-521, 1983.
    84.Fraser RDB and Macrae TP. The crystalline structure of collagen fibrils in tendon. J Mol Biol, 127, 129–33, 1979.
    85.Mehta RC, Thanoo BC and DeLuca PP. Peptide containing microspheres from low molecular weight and hydrophilic poly(d,l-lactide-co-glycolide). J Control Release, 41, 249-257, 1996.
    86.Chiba M, Hanes J and Langer R. Controlled protein delivery from biodegradable tyrosine-containing poly(anhydride-co-imide) microspheres. Biomaterials, 18, 893-901, 1997.
    87.Ravivarapu HB, Burton K and DeLuca PP. Polymer and microsphere blending to alter the release of a peptide from PLGA microspheres. Eur J Pharm Biopharm, 50, 263-270, 2000.
    88.Hausberger AG and DeLuca PP. Characterization of biodegradable poly(D,L-lactide-co-glycolide) polymers and microspheres. J Pharm Biomed Anal, 13, 747-760, 1995.
    89.Kostanski JW and DeLuca PP. A novel in vitro release technique for peptide-containing biodegradable microspheres. AAPS PharmSciTech [serial online], 1(1) article 4, 2000.
    90.Hoppe R, Ortlam A, Rathousky J, SchulzEkloff G and Zukal A. Synthesis of titanium-containing MCM-41 mesoporous molecular sieves in the presence of zinc phthalocyanine and rhodamine B. Micropor Mat, 8(5-6), 267-273, 1997.
    91.Chomski E, Dag O, Kuperman A, Coombs N and Ozin GA. New forms of luminescent silicon: Silicon-silica composite mesostructures. Chem Vapor Depos, 2(1), 8-13, 1996.
    92.Georgiou E, Theodossiou T, Hovhannisyan V, Politopoulos K, Rapti GS and Yova D. Second and third optical harmonic generation in type I collagen, by nanosecond laser irradiation, over a broad spectral region. Opt Commun, 176(1-3), 2000.
    93.Yova D, Hovhannisyan V and Theodossiou T. Photochemical effects and hypericin photosensitized processes in collagen. J Biomed Opt, 6(1), 2001.
    94.Theodossiou T, Rapti GS, Hovhannisyan V, Georgiou E, Politopoulos K and Yova D. Thermally induced irreversible conformational changes in collagen probed by optical second harmonic generation and laser-induced fluorescence. Laser Med Sci, 17(1), 34-41, 2002.
    95.Bruchez M, Moronne M, Gin P, Weiss S and Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science, 281 (5385), 2013-2016, ,1998.
    96.Chan WCW and Nie SM. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 281(5385), 2016-2018, 1998.
    97.Avnir D, Braun S, Lev O and Ottolenghi M. Enzymes and other proteins entrapped in sol-gel materials. Chem Mater, 6(10), 1605-1614, 1994.
    98.Pearson JE, Gill A and Vadgama P. Analytical aspects of biosensors. Ann Clin Biochem, 37, 119-145 Part 2, 2000.
    99.Frey A, Neutra MR and Robey FA. Peptomer aluminum oxide nanoparticle conjugates as systemic and mucosal vaccine candidates: Synthesis and characterization of a conjugate derived from the C4 domain of HIV-1(MN) gp120. Bioconjugate Chem, 8(3), 424-433, 1997.
    100.Tischer BK, Schumacher D, Beer M, Beyer J, Teifke JP, Osterrieder K, Wink K, Zelnik V, Fehler F and Osterrieder N. A DNA vaccine containing an infectious Marek's disease virus genome can confer protection against tumorigenic Marek's disease in chickens. J Gen Virol, 83, 2367-2376 Part 10, 2002.
    101.Kneuer C, Sameti M, Bakowsky U, Schiestel T, Schirra H, Schmidt H and Lehr CM. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjugate Chem, 11(6), 926-932, 2000.
    102.Cui ZR, Mumper RJ. Microparticles and nanoparticles as delivery systems for DNA vaccines. Crit Rev Ther Drug, 20(2-3), 103-137, 2003.
    103.He Q, Mitchell AR, Johnson SL, Wagner-Bartak C, Morcol T and Bell SJD. Calcium phosphate nanoparticle adjuvant. Clin Diagn Lab Immun, 7(6), 899-903, 2000.
    104.He Q, Mitchell A, Morcol T and Bell SJD. Calcium phosphate nanoparticles induce mucosal immunity and protection against herpes simplex virus type 2. Clin Diagn Lab Immun, 9(5), 1021-1024, 2002.
    105.Truong-Le VL, Walsh SM, Schweibert E, Mao HQ, Guggino WB, August JT and Leong KW. Gene transfer by DNA-gelatin nanospheres. Arch Biochem Biophys, 361(1), 47-56, 1999.
    106.Luo D and Saltzman WM. Synthetic DNA delivery systems. Nat Biotechnol, 18(1), 33-37, 2000.
    107.Hirko A, Tang F and Hughes JA. Cationic lipid vectors for plasmid DNA delivery. Curr Med Chem, 10, 1185-1193, 2003.
    108.Kawakami S, Yamashita F, Nishida K, Nakamura J and Hashida M. Glycosylated cationic liposomes for cell-selective gene delivery. Crit Rev Ther Drug, 19, 171-190, 2002.
    109.Audouy SAL, de Leij LFMH, Hoekstra D and Molema G. In vivo characteristics of cationic liposomes as delivery vectors for gene therapy. Pharm Res, 19, 1599-1605, 2002.
    110.Chonn A and Cullis PR. Recent advances in liposome technologies and their applications for systemic gene delivery. Adv Drug Del Rev, 30(1-3), 73-83, 1998.
    111.Hashida M, Nishikawa M, Yamashita F and Takakura Y. Cell-specific delivery of genes with glycosylated carriers. Adv Drug Del Rev, 52(3), 187-196, 2001.
    112.Orrantia E, Chang PL. Intracellular-distribution of dna internalized through calcium-phosphate precipitation. Exp Cell Res, 190(2), 170-174, 1990.
    113.Salem AK, Searson PC and Leong KW. Multifunctional nanorods for gene delivery. Nat Mater, 2(10), 668-671, 2003.
    114.Xiang JJ, Tang JQ, Zhu SG, Nie XM, Lu HB, Shen SR, Li XL, Tang K, Zhou M and Li GY. IONP-PLL: a novel non-viral vector for efficient gene delivery. J Gene Med, 5(9), 803-817, 2003.
    115.Hoffman RM. In vivo cell biology of cancer cells visualized with fluorescent proteins. Curr Top Dev Biol, 70, 121, 2005.
    116.Yang M, Hasegawa S, Jiang P, Wang XO, Tan YY, Chishima T, Shimada H, Moossa AR and Hoffman RM. Widespread skeletal metastatic potential of human lung cancer revealed by green fluorescent protein expression. Cancer Res, 58(19), 4217-4221, 1998.
    117.Yang M, Jiang P, Sun FX, Hasegawa S, Baranov E, Chishima T, Shimada H, Moossa AR and Hoffman RM. A fluorescent orthotopic bone metastasis model of human prostate cancer. Cancer Res, 59(4), 781-786, 1999.
    118.Bouvet M, Yang M, Nardin S, Wang X, Jiang P, Baranov E, Moossa AR and Hoffman RM. Chronologically-specific metastatic targeting of human pancreatic tumors in orthotopic models. Clin Exp Metastas, 18(3), 213-218, 2000.
    119.Onuma K, Ito A, Tateishi T and Kameyama T. Growth-kinetics of hydroxyapatite crystal revealed by atomic-force microscopy. J Cryst Growth, 154(1-2), 118-125, 1995.
    120.Demul FFM, Hottenhuis MHJ, Bouter P, Greve J, Arends J and Tenbosch JJ. Micro-raman line broadening in synthetic carbonated hydroxyapatite. J Dent Res, 65(3), 437-440, 1986.
    121.Tanahashi M, Yao T, Kokubo T, Minoda M, Miyamoto T, Nakamura T and Yamamuro T. Apatite coated on organic polymers by biomimetic process - improvement in adhesion to substrate by hcl treatment. J Mater Sci-Mater M, 6(6), 319-326, 1995.
    122.Panda RN, Hsieh MF, Chung RJ and Chin TS. FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique. J Phys Chem Solids, 64(2), 193-199, 2003.
    123.Chusuei CC, Goodman DW, Stipdonk MJV, Justes DR and Schweikert EA. Calcium phosphate phase identification using XPS and time-of-flight cluster SIMS. Anal Chem, 71, 149-153, 1999.
    124.Agranovich VM, Atanasov RD and Bassani GF. Excitons in organic multiple quantum-well structures. Chem Phys Lett, 199(6), 621-624, 1992.
    125.Liu W, Soh CB, Chen P and Chua SJ. Characterization of AlInGaN quaternary epilayers grown by metal organic chemical vapor deposition. J Cryst Growth, 268(3-4), 509-514, 2004.
    126.Ongstad AP, Kaspi R and Moeller CE. Spectral blueshift and improved luminescent properties with increasing GaSb layer thickness in InAs–GaSb type-II superlattices. J Appl Phys, 89(4), 2001.
    127.Chung RJ, Hsieh MF, Huang CW, Perng LH, Wen HW and Chin TS. Anti-microbial Effects and Human Gingival Cytotoxicity of Sol-gel-derived Hydroxyapatite Coatings. J Biomed Mater Res B, 76B(1), 2006.
    128.Panda RN, Hsieh MF, Chung RJ and Chin TS. FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique. J Phys Chem Solids, 64, 193-199, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE