研究生: |
許瑋麟 Hsu, Wei-Lin |
---|---|
論文名稱: |
NixCo0.6Fe0.2CrySizAlTin 高熵合金披覆式塗層機械性質、熱性質與高溫氧化行為之研究 Study on Mechanical Properties, Thermal Properties and Oxidation Behavior of High-Entropy NixCo0.6Fe0.2CrySizAlTin Overlay Coatings |
指導教授: |
葉均蔚
Yeh, Jien-Wei 葉安洲 Yeh, An-Chou |
口試委員: |
洪健龍
Hong, Jian-Long 李勝隆 Lee, Sheng-Long 蔡哲瑋 Tsai, Che-Wei |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 160 |
中文關鍵詞: | 高熵合金 、火花電漿燒結 、熱噴塗製程 、高溫氧化阻抗 、熱性質 、機械性質 |
外文關鍵詞: | High-entropy alloy, Spark plasma sintering, Thermal spraying process, High-temperature oxidation resistance, Thermal properties, Mechanical properties |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究設計NixCo0.6Fe0.2CrySizAlTin 高熵合金並以火花電漿燒結與熱噴塗製程製備高溫保護塗層。第一部分以火花電漿燒結法製備高熵合金試片,對微結構、高溫硬度、高溫熱傳導與熱膨脹係數、耐氧化性質以及氧化層生成與增厚行為做詳細探討,評估高熵合金作為高溫保護塗層之可行性,並與工業常用之MCrAlY (M = Ni and/or Co) 做比較,以做為工業應用之參考。第二部分則使用熱噴塗方式將高熵合金應用於熱阻絕層系統 [thermal barrier coating (TBC)] 作為黏結層 (bond coat)。首先比較傳統大氣電漿熔射 (APS),高速火焰熔射 (HVOF) 與溫噴塗 (WS) 製程所製備之塗層的差異,包括機械性質以及抗氧化能力。接著以表現最佳的WS製程將高熵合金粉末噴覆於超合金基板做為與釔安定氧化鋯外層 (YSZ) 間的黏結層,探討在高溫環境下與基板以及陶瓷外層之附著性,用以評估高熵合金作為TBC系統中黏結層之可行性。
第一部份之實驗結果顯示, HEAC 燒結試片在1100 ℃ 環境形成連續緻密的氧化鋁保護層 (α-Al2O3),表現出與MCrAlY相似的優異氧化行為。且在1100 °C高溫環境仍保有相穩定與不錯的硬度,其硬度值可維持在230 Hv左右。而MCrAlY已經明顯軟化硬度值只有55 Hv。HEAC除了具有高硬度與優異的耐氧化能力之外,同時展現良好的熱阻抗力,1000 °C高溫熱傳導值比MCrAlY低30 %。經由計算結果證實,以HEAC取代MCrAlY作為保護層能進一步降低工件內部的溫度。此外,HEAC是體心立方 (BCC) 為主的結構,其熱膨脹係數也比面心立方 (FCC) 為主的MCrAlY低。熱膨脹係數對溫度作圖結果顯示,HEAC曲線比MCrAlY更貼近超合金基材曲線,高溫環境下預期能降低熱膨脹失配並減少塗層與基板間之裂痕產生。
由於HEAC合金中的鈦元素在高溫下容易形成結構鬆散的氧化鈦 (TiO2),對於釔安定氧化鋯 (YSZ) 之附著性不利。針對本研究第二部分熱阻障層系統之實驗,另外設計無鈦合金 HEACM. HEACM 合金粉末同樣先以火花電漿燒結製備試片以評估上述各項性質,包括硬度、熱傳導係數、熱膨脹係數、氧化增重測試以及氧化層成長機制等。實驗結果顯示SPS-HEACM之熱傳導係數與熱膨脹係數 (TC: 9.6 W/mK at RT, 19.3 W/mK at 1000 °C; average CTE: 13.2 × 10−6/K) 與SPS-HEAC相近 (TC: 9.8 W/mK at RT, 18.6 W/mK at 1000 °C; average CTE: 13.9 × 10−6/K),硬度則稍低於 SPS-HEAC (HEACM: 980 Hv at RT; HEAC: 1045 at RT)。其氧化增重曲線與MCrAlY曲線相似且氧化實驗過程中沒有氧化鈦與氧化鉻層形成。
本研究第二部份採用機械性質與氧化阻抗表現最佳之溫噴塗製程分別製備HEAC、HEACM以及MCrAlY黏結層;以大氣電漿熔射製備YSZ 陶瓷外層。1100 °C 循環熱處理實驗結果顯示,含有鈦及較多量鉻之HEAC在熱處理過程中產生大量的鉻鈦氧化物,導致在100週期時YSZ就剝落。而HEACM系統則有明顯改善,直到168周期才發生剝落。與傳統MCrAlY相比,高熵合金塗層具有較佳的硬度與熱阻抗,抗氧化力亦能媲美MCrAlY,在高溫環境下作為工件外部保護層應用極具潛力。但是作為TBC系統中的黏結層,則可能因為塗層厚度不足以及塗層有較多裂縫等問題,尚無法達到MCrAlY的使用壽命。
This research proposes an overlay coating based on the high-entropy alloys (HEAs) composition NixCo0.6Fe0.2CrySizAlTin by using spark-plasma sintering and thermal spraying processes. In the first part, the microstructure, high-temperature hardness, oxidation kinetics, high-temperature heat conduction and thermal expansion behavior of spark plasma-sintered HEA specimens were investigated to evaluate the high-entropy alloys as a high-temperature protective coating for industrial applications. The conventional MCrAlY (M = Ni and/or Co) specimens were prepared by the same process for comparison. The second part utilized thermal spraying technique to prepare HEA coatings. Firstly, the characteristics of coatings prepared by atmospheric plasma spraying (APS), high speed flame spraying (HVOF) and warm spraying (WS) processes were compared, including mechanical properties and oxidation kinetics. The best-performed WS-HEA coatings were then applied to thermal barrier coating (TBC) systems as a bond coat. The TGOs (thermally ground oxides) growing behavior and the adhesion among YSZ top coat and HEA bond coat were investigated.
For the first part, experimental results indicates that the spark plasma-sintered HEAC can form protective α-Al2O3 at 1100 °C and exhibits oxidation behavior similar to that of MCrAlY. It also exhibits good thermal stability and very high room-temperature hardness (1045 Hv) and a hot hardness of 230 Hv at 1100 °C whereas the hardness of MCrAlY dropped from 450 Hv to 55 Hv. Moreover, as compared to MCrAlY, the HEAC possesses a thermal conductivity lower than MCrAlY by 30% at 1000 °C. The heat insulation of TBC for turbine material can be improved by replacing MCrAlY to the HEAC. Besides, due to its BCC structure, the CTE of HEAC is smaller than MCrAlY and thus is expected to show more compatibility to the blade alloys or YSZ top coat by reducing the thermal mismatch along the interfaces of YSZ/HEAC and HEAC/substrate, respectively.
However, the formation of Ti-Cr-Al mixed oxides above HEAC surface will be significantly detrimental to the adhesion to YSZ top coat when the HEAC bond coat is utilized to the TBC system. Therefore, a new alloy composition Ti-free with decreased Cr was designed (HEACM). This alloy was also prepared by SPS with the same sintering parameters as those used for HEAC for comparison. The experimental results show that the thermal conductivity and thermal expansion coefficient of SPS-HEACM (TC: 9.6 W/mK at RT, 19.3 W/mK at 1000 °C; average CTE: 13.2 × 10−6/K) are similar to those of SPS-HEAC (TC: 9.8 W/mK at RT, 18.6 W/mK at 1000 °C; average CTE: 13.9 × 10−6/K), and the hardness is just slightly lower than SPS-HEAC (HEACM: 980 Hv at RT, 213 Hv at 1100 °C; HEAC: 1045 at RT, 230 at 1100 °C). The oxidation weight-gain curve of HEACM is similar to the MCrAlY curve and no oxidation of titanium oxide and chromium oxide is formed during the cyclic oxidation experiment.
For the second part, the warm-sprayed HEAC and HEACM coatings, which show the best performance in mechanical properties and oxidation resistance, were utilized to TBC system as a bond coat (with YSZ ceramic top coat and superalloy substrate). The results of 1100 ° C cyclic heat treatment show that the Ti-contained HEAC presented large amount of Ti-Cr-Al oxides at bond-coat/top-coat interface during heat treatment, resulting in earlier delamination of YSZ layer at 100th cycle. Meanwhile, the HEACM system did not exhibit Ti-Cr-Al oxides during heat treatment and its life had prolonged to 168th cycle. As compared to conventional MCrAlY coatings, the HEA coatings have higher hardness, better thermal resistance and comparable oxidation resistance, which show great potential as an external protective layer in high temperature environment. However, as a bond coat in the TBC system, the service life of HEA coatings has not reached MCrAlY level so far, which might be due to the insufficient thickness of bond coating and the insufficient soundness of HEA layer with more internal cracks.
[1] H.M. Tawancy, A.I. Mohammad, L.M. Al-Hadhrami, H. Dafalla, F.K. Alyousf, On the performance and failure mechanism of thermal barrier coating systems used in gas turbine blade applications: Influence of bond coat/superalloy combination, Eng. Fail. Anal., 57 (2015) 1-20.
[2] Y. Zhang, Electrodeposited MCrAlY Coatings for Gas Turbine Engine Applications, Jom, 67 (2015) 2599-2607.
[3] H.M. Tawancy, On the Degradation Modes and Oxidation Behavior of Platinum Aluminide Bond Coats in Thermal Barrier Coating Used as Surface Protection System for a Turbine Blade Superalloy, Oxid. Met., 81 (2014) 237-252.
[4] D.R. Clarke, M. Oechsner, N.P. Padture, Thermal-barrier coatings for more efficient gas-turbine engines, MRS Bull., 37 (2012) 891-902.
[5] M.D. Chambers, D.R. Clarke, Effect of long term, high temperature aging on luminescence from Eu-doped YSZ thermal barrier coatings, Surf. Coat. Technol., 201 (2006) 3942-3946.
[6] M.R. Winter, D.R. Clarke, Thermal conductivity of yttria-stabilized zirconia-hafnia solid solutions, Acta Mater., 54 (2006) 5051-5059.
[7] D.E. Mack, S.M. Gross, R. Vassen, D. Stover, Metal-glass based composites for application in TBC-Systems, Journal of Thermal Spray Technology, 15 (2006) 652-656.
[8] H. Dong, G.J. Yang, C.X. Li, X.T. Luo, C.J. Li, Effect of TGO Thickness on Thermal Cyclic Lifetime and Failure Mode of Plasma- Sprayed TBCs, J. Am. Ceram. Soc., 97 (2014) 1226-1232.
[9] H. Lau, Influence of yttria on the cyclic lifetime of YSZ TBC deposited on EB-PVD NiCoCrAlY bondcoats and its contribution to a modified TBC adhesion mechanism, Surf. Coat. Technol., 235 (2013) 121-126.
[10] S.B. Mishra, K. Chandra, S. Prakash, Erosion-corrosion performance of NiCrAlY coating produced by plasma spray process in a coal-fired thermal power plant, Surf. Coat. Technol., 216 (2013) 23-34.
[11] C.M. Lin, H.L. Tsai, C. Yang, Effects of microstructure and properties on parameter optimization of boron carbide coatings prepared using a vacuum plasma-spraying process, Surf. Coat. Technol., 206 (2012) 2673-2681.
[12] R.D. Jackson, M.P. Taylor, H.E. Evans, X.H. Li, Oxidation Study of an EB-PVD MCrAlY Thermal Barrier Coating System, Oxid. Met., 76 (2011) 259-271.
[13] R. Vassen, M.O. Jarligo, T. Steinke, D.E. Mack, D. Stover, Overview on advanced thermal barrier coatings, Surf. Coat. Technol., 205 (2010) 938-942.
[14] M.H. Sullivan, D.R. Mumm, Transient stage oxidation of MCrAlY bond coat alloys in high temperature, high water vapor content environments, Surf. Coat. Technol., 258 (2014) 963-972.
[15] G. Mauer, D. Sebold, R. Vassen, MCrAlY Bondcoats by High-Velocity Atmospheric Plasma Spraying, Journal of Thermal Spray Technology, 23 (2014) 140-146.
[16] K. Yuan, R. Eriksson, R.L. Peng, X.H. Li, S. Johansson, Y.D. Wang, Modeling of microstructural evolution and lifetime prediction of MCrAlY coatings on nickel based superalloys during high temperature oxidation, Surf. Coat. Technol., 232 (2013) 204-215.
[17] K.K. Ma, J.M. Schoenung, Isothermal oxidation behavior of cryomilled NiCrAlY bond coat: Homogeneity and growth rate of TGO, Surf. Coat. Technol., 205 (2011) 5178-5185.
[18] B. Wang, J. Gong, A.Y. Wang, C. Sun, R.F. Huang, L.S. Wen, Oxidation behaviour of NiCrAlY coatings on Ni-based superalloy, Surf. Coat. Technol., 149 (2002) 70-75.
[19] Y.J. Zhang, X.F. Sun, H.R. Guan, Z.Q. Hu, 1050 degrees C isothermal oxidation behavior of detonation gun sprayed NiCrAlY coating, Surf. Coat. Technol., 161 (2002) 302-305.
[20] A.H. Yaghtin, S. Javadpour, M.H. Shariat, Hot corrosion of nanostructured CoNiCrAlYSi coatings deposited by high velocity oxy fuel process, J. Alloy. Compd., 584 (2014) 303-307.
[21] Y. Fukuda, K. Kawahara, T. Hosoda, Application of High Velocity Flame Sprayings for Superheater Tubes in Waste Incinerators, in: CORROSION 2000, NACE International, Orlando, FL, 2000, pp. 00261-00264.
[22] K. Yuan, R.L. Peng, X.H. Li, A. Talus, S. Johansson, Y.D. Wang, Hot corrosion of MCrAlY coatings in sulphate and SO2 environment at 900 degrees C: Is SO2 necessarily bad?, Surf. Coat. Technol., 261 (2015) 41-53.
[23] M.J. Pomeroy, Coatings for gas turbine materials and long term stability issues, Mater. Des., 26 (2005) 223-231.
[24] B. Wang, J. Gong, C. Sun, R.F. Huang, L.S. Wen, The behavior of MCrAlY coatings on Ni3Al-base superalloy, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 357 (2003) 39-44.
[25] C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, S.Y. Chang, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 36A (2005) 881-893.
[26] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6 (2004) 299-303.
[27] S. Ranganathan, Alloyed pleasures: Multimetallic cocktails, Curr. Sci., 85 (2003) 1404-1406.
[28] B.S. Murty, J.W. Yeh, S. Ranganathan, High Entropy Alloys, Butterworth-Heinemann, Oxford, 2014.
[29] L.M. Wang, C.C. Chen, J.W. Yeh, S.T. Ke, The microstructure and strengthening mechanism of thermal spray coating NixCo0.6Fe0.2CrySizAlTi0.2 high-entropy alloys, Mater. Chem. Phys., 126 (2011) 880-885.
[30] P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating, Adv. Eng. Mater., 6 (2004) 74-78.
[31] Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, J. Mater. Sci., 41 (2006) 763-777.
[32] V.A. Mamedov, Spark plasma sintering (sps) as advanced powdermetallurgy sintering method J. Powder Metallurgy Progress, 2 (2002) 32-43.
[33] M. Yue, J.X. Zhang, W.Q. Liu, G.P. Wang, Chemical stability and microstructure of Nd-Fe-B magnet prepared by spark plasma sintering, J. Magn. Magn. Mater., 271 (2004) 364-368.
[34] B. Basu, J.H. Lee, D.Y. Kim, Development of WC-ZrO2 nanocomposites by spark plasma sintering, J. Am. Ceram. Soc., 87 (2004) 317-319.
[35] M. Nygren, Z.J. Shen, Novel assemblies via spark plasma sintering, Silic. Ind., 69 (2004) 211-218.
[36] V. Lughi, D.R. Clarke, High temperature aging of YSZ coatings and subsequent transformation at low temperature, Surf. Coat. Technol., 200 (2005) 1287-1291.
[37] D.R. Clarke, S.R. Phillpot, Thermal barrier coating materials, Mater. Today, 8 (2005) 22-29.
[38] N.P. Padture, M. Gell, E.H. Jordan, Materials science - Thermal barrier coatings for gas-turbine engine applications, Science, 296 (2002) 280-284.
[39] Phase diagram of partially stabilized zirconia, University of Cambridge, Available from: https://doitpoms.admin.cam.ac.uk/ tlplib/fuel-cells/sofc_electrolyte.php?printable=1.
[40] X.Q. Cao, R. Vassen, D. Stoever, Ceramic materials for thermal barrier coatings, J. Eur. Ceram. Soc., 24 (2004) 1-10.
[41] M. Schütze, Corrosion and Environmental Degradation, Wiley-VCH, 2000.
[42] A.R. Nicoll, G. Wahl, The effect of alloying additions on m-cr-al-y systems - an experimental-study, Thin Solid Films, 95 (1982) 21-34.
[43] J.G. Smeggil, Some comments on the role of yttrium in protective oxide scale adherence, Materials Science and Engineering, 87 (1987) 261-265.
[44] N. Czech, F. Schmitz, W. Stamm, Improvement of mcraly coatings by addition of rhenium, Surf. Coat. Technol., 68 (1994) 17-21.
[45] R. Sivakumar, B.L. Mordike, High-temperature coatings for gas-turbine blades - a review, Surf. Coat. Technol., 37 (1989) 139-160.
[46] A. Rabiei, A.G. Evans, Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings, Acta Mater., 48 (2000) 3963-3976.
[47] K.W. Schlichting, Failure modes of plasma-sprayed thermal barrier coatings, in, University of Connecticut, 2000, pp. 186.
[48] E.A.G. Shillington, D.R. Clarke, Spalling failure of a thermal barrier coating associated with aluminum depletion in the bond-coat, Acta Mater., 47 (1999) 1297-1305.
[49] E.Y. Lee, R.R. Biederman, R.D. Sisson, Diffusional interactions and reactions between a partially stabilized zirconia thermal barrier coating and the nicra1y bond coat, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 120 (1989) 467-473.
[50] B.C. Wu, E. Chang, S.F. Chang, C.H. Chao, Thermal cyclic response of yttria-stabilized zirconia conicraly thermal barrier coatings, Thin Solid Films, 172 (1989) 185-196.
[51] R.A. Miller, C.E. Lowell, Failure mechanisms of thermal barrier coatings exposed to elevated-temperatures, Thin Solid Films, 95 (1982) 265-273.
[52] P.K. Wright, A.G. Evans, Mechanisms governing the performance of thermal barrier coatings, Curr. Opin. Solid State Mat. Sci., 4 (1999) 255-265.
[53] P.K. Wright, Influence of cyclic strain on life of a PVD TBC, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 245 (1998) 191-200.
[54] K.W. Schlichting, N.P. Padture, E.H. Jordan, M. Gell, Failure modes in plasma-sprayed thermal barrier coatings, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 342 (2003) 120-130.
[55] X.Y. Gong, D.R. Clarke, On the measurement of strain in coatings formed on a wrinkled elastic substrate, Oxid. Met., 50 (1998) 355-376.
[56] D.R. Clarke, W. Pompe, Critical radius for interface separation of a compressively stressed film from a rough surface, Acta Mater., 47 (1999) 1749-1756.
[57] C. H. Hsueh, P. F. Becher, E. R. Fuller, S. A. Langer, W.C. Carter, Surface-Roughness Induced Residual Stresses in Thermal Barrier Coatings: Computer Simulations, Mater. Sci. Forum, 308-311 (1999) 442-449.
[58] C.H. Hsueh, E.R. Fuller, Analytical modeling of oxide thickness effects on residual stresses in thermal barrier coatings, Scr. Mater., 42 (2000) 781-787.
[59] S. Kuroda, J. Kawakita, M. Watanabe, H. Katanoda, Warm spraying-a novel coating process based on high-velocity impact of solid particles, Sci. Technol. Adv. Mater., 9 (2008) 17.
[60] An Introduction to Thermal Spray, 2013 Sulzer Metco, Available from: https://www.upc.edu/sct/es/documents_equipament/d_324_ id-804-2.pdf.
[61] F. Leroux, C. Campagne, A. Perwuelz, L. Gengembre, Fluorocarbon nano-coating of polyester fabrics by atmospheric air plasma with aerosol, Appl. Surf. Sci., 254 (2008) 3902-3908.
[62] S. Paulussen, R. Rego, O. Goossens, D. Vangeneugden, K. Rose, Plasma polymerization of hybrid organic-inorganic monomers in an atmospheric pressure dielectric barrier discharge, Surf. Coat. Technol., 200 (2005) 672-675.
[63] V.A.D. Souza, A. Neville, Aspects of microstructure on the synergy and overall material loss of thermal spray coatings in erosion-corrosion environments, Wear, 263 (2007) 339-346.
[64] A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, V. Fomin, Cold Spray Technology, Oxford: Elsevier, 2006.
[65] A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano, M. Dao, Cold spray coating: review of material systems and future perspectives, Surf. Eng., 30 (2014) 369-U329.
[66] T. Schmidt, F. Gaertner, H. Kreye, New developments in cold spray based on higher gas and particle temperatures, Journal of Thermal Spray Technology, 15 (2006) 488-494.
[67] W. Chen, U. Anselmi-Tamburini, J.E. Garay, J.R. Groza, Z.A. Munir, Fundamental investigations on the spark plasma sintering/synthesis process - I. Effect of dc pulsing on reactivity, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 394 (2005) 132-138.
[68] W.J. Xie, M.H. Yang, Y. Cheng, D.W. Li, Y. Zhang, Z. Zhuang, Optical fiber relative-humidity sensor with evaporated dielectric coatings on fiber end-face, Opt. Fiber Technol., 20 (2014) 314-319.
[69] K.S.S. Harsha, Principles of Vapor Deposition of Thin Films, Elsevier Science, 2005.
[70] J.T. Demasimarcin, D.K. Gupta, Protective coatings in the gas-turbine engine, Surf. Coat. Technol., 68 (1994) 1-9.
[71] Y.H. Sheu, A study on the multicomponent alloy systems with equal-mole FCC or BCC elements, in: Department of Materials Science and Engineering, National Tsing Hua University, Taiwan, 2000.
[72] K.T. Lai, Properties of the multicomponent alloy with equal-mole elements, in: Department of Materials Science and Engineering, National Tsing Hua University, Taiwan, 1998.
[73] K.H. Huang, A study on the multicomponent alloy systems containing equal-mole elements, in: Department of Materials Science and Engineering, National Tsing Hua University, Taiwan, 1996.
[74] M.H. Tsai, C.W. Wang, C.H. Lai, J.W. Yeh, J.Y. Gan, Thermally stable amorphous (AlMoNbSiTaTiVZr)(50)N(50) nitride film as diffusion barrier in copper metallization, Appl. Phys. Lett., 92 (2008) 3.
[75] J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements, Mater. Chem. Phys., 103 (2007) 41-46.
[76] J.W. Yeh, Recent progress in high-entropy alloys, Ann. Chim.-Sci. Mat., 31 (2006) 633-648.
[77] Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, H.C. Shih, Microstructure and electrochemical properties of high entropy alloys - a comparison with type-304 stainless steel, Corrosion Sci., 47 (2005) 2257-2279.
[78] C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 35A (2004) 1465-1469.
[79] R.A. Swalin, Thermodynamics of Solids, John Wiley & Sons, New York, 1972.
[80] C.Y. Chen, Development of thermal-sprayed high-entropy alloy coatings in: Department of Materials Science and Engineering, National Tsing Hua University, Taiwan, 2002.
[81] W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, W.A. Oates, PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation, Calphad-Comput. Coupling Ph. Diagrams Thermochem., 33 (2009) 328-342.
[82] J.C. Zhao, M.F. Henry, CALPHAD - Is it ready for superalloy design?, Adv. Eng. Mater., 4 (2002) 501-508.
[83] P. Novak, J. Kriz, A. Michalcova, D. Vojtech, Microstructure Evolution of Fe-Al-Si and Ti-Al-Si Alloys during High-Temperature Oxidation, in: M. Longauerova, P. Zubko (Eds.) Metallography Xv, Trans Tech Publications Ltd, Stafa-Zurich, 2014, pp. 353-358.
[84] A.C. Yeh, K.C. Yang, J.W. Yeh, C.M. Kuo, Developing an advanced Si-bearing DS Ni-base superalloy, J. Alloy. Compd., 585 (2014) 614-621.
[85] H.E. Zschau, W. Zhao, S. Neve, B. Gleeson, M. Schutze, Promotion of the Al2O3-Scale Formation on Ni-Cr-Al Alloys via the Fluorine Effect, Oxid. Met., 83 (2015) 335-349.
[86] W.R. Chen, X. Wu, D. Dudzinski, P.C. Patnaik, Modification of oxide layer in plasma-sprayed thermal barrier coatings, Surf. Coat. Technol., 200 (2006) 5863-5868.
[87] C.S. Giggins, F.S. Pettit, Oxidation of ni-cr-al alloys between 1000 degrees and 1200 degrees C, J. Electrochem. Soc., 118 (1971) 1782-&.
[88] A. Misra, J.J. Petrovic, T.E. Mitchell, Microstructures and mechanical properties of a Mo3Si-Mo5Si3 composite, Scr. Mater., 40 (1998) 191-196.
[89] S.V. Raj, An evaluation of the properties of cr3si alloyed with mo, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 201 (1995) 229-241.
[90] U. Troitzsch, D.J. Ellis, The ZrO2-TiO2 phase diagram, J. Mater. Sci., 40 (2005) 4571-4577.
[91] V.S. Neshpor, The thermal conductivity of the silicides of transition metals, Journal of engineering physics, 15 (1968) 750-752.
[92] Y. Terada, K. Ohkubo, T. Mohri, T. Suzuki, Thermal conductivity of intermetallic compounds with metallic bonding, Mater. Trans., 43 (2002) 3167-3176.
[93] H.P. Chou, Y.S. Chang, S.K. Chen, J.W. Yeh, Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 <= x <= 2) high-entropy alloys, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 163 (2009) 184-189.
[94] Osaka Science and Technology Center. Thermal conductivity & Average linear thermal expansion coefficient, Available from: http://www.ostec.or.jp/nmc/ndb/cgi-bin/NI/NK1.htm.
[95] High Temp Metals-Inconel 718 technical data, Available from: http://www.hightempmetals.com.
[96] J. Toscano, A. Gil, T. Huttel, E. Wessel, D. Naumenko, L. Singheiser, W.J. Quadakkers, Temperature dependence of phase relationships in different types of MCrAlY-coatings, Surf. Coat. Technol., 202 (2007) 603-607.
[97] G. Duan, H.M. Wang, High-temperature wear resistance of a laser-clad gamma/Cr3Si metal silicide composite coating, Scr. Mater., 46 (2002) 107-111.
[98] L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, John Wiley & Sons (2008), pp 99.
[99] S.V. Klinkov, V.F. Kosarev, M. Rein, Cold spray deposition: Significance of particle impact phenomena, Aerosp. Sci. Technol., 9 (2005) 582-591.