簡易檢索 / 詳目顯示

研究生: 吳雅惠
Wu, Ya-Hui
論文名稱: Structural and reverse kinetics analysis of substrate binding to the phosphopantetheine adenylyltransferase and its mutants from Helicobacter pylori
利用結構與酵素的逆反應動力學分析胃幽門螺旋桿菌中正常和突變的磷酸泛酸醯基乙胺腺苷轉移酶和受質的結合情形
指導教授: 殷献生
口試委員: 呂平江
藍忠昱
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 51
中文關鍵詞: 胃幽門螺旋桿菌磷酸泛酸醯基乙胺腺苷轉移酶
外文關鍵詞: Helicobacter pylori, phosphopantetheine adenylyltransferase
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 胃幽門螺旋桿菌是一種格蘭氏陰性微需氧菌,全世界有百分之50的人口感染胃幽門螺旋桿菌,此菌會寄生在人類的胃部而導致胃潰瘍甚至胃癌的產生,但是現今治療胃幽門螺旋桿菌的藥物藥性已經漸漸下降產生抗藥性並且尚無新藥的開發,所以研發新的藥物來對抗胃幽門螺旋桿菌是迫在眉睫的事。我們所用來當作藥物設計的目標蛋白是在胃幽門螺旋桿菌中參與輔酶A生成反映途徑中的速率限制步驟的酵素全名叫磷酸泛酸醯基乙胺腺苷轉移酶,已有研究指出如將此蛋白的基因去除的話則會使得輔酶A的生成大量減少並影響微生物的生長。

    我們過去已解出磷酸泛酸醯基乙胺腺苷轉移酶與輔酶A的複合體結構,為了想要了解磷酸泛酸醯基乙胺腺苷轉移酶與其受質是如何結合和那些胺基酸是有參與催化反應,我們將各個可能參與反應的氨基酸突變成丙胺酸,在進一步的利用酵素的逆反應動力學來去比較突變後的蛋白與原始蛋白活性的差異,以及利用圓二色光譜看二級結構是否有改變,最後利用X光繞射儀看突變後的蛋白其胺基酸與受質間的作用力是否有改變。目前在此研究中已初步篩選出對於磷酸泛酸醯基乙胺腺苷轉移酶與受質結合和催化非常重要的氨基酸。


    H. pylori is a gram-negative and microaerophilic bacterium that infects more than 50% of the world population and increases the risk of developing gastric ulcer and stomach cancer. Antibiotics, e.g., amoxicillin and clarithromycin, and a proton-pump inhibitor have been used to treat H. pylori infection, but as H. pylori has become increasingly resistant to antibiotics, treatment often fails. It is important to find a new treatment or antibacterial drug targets to against H. pylori infection. Coenzyme A (CoA) is an essential cofactor and a major intracellular carrier of activated acyl groups in all living organisms. Phosphopantetheine adenylyltransferase (PPAT) from H. pylori is a penultimate, rate-limiting enzyme in the CoA biosynthesis pathway. The enzyme transfer adenylyl group from ATP to phosphorpantetheine, yielding dephospho-CoA and pyrophosphate. Recent study indicated that knock out the PPAT gene in Escherichia coli reducing its CoA levels and preventing bacterial growth. In addition, amino acid sequence and secondary structure between H. pylori and human PPATs are dissimilar. Therefore, PPAT is a potential antibacterial target. We have determined the complex structure of H. pylori PPAT with a CoA molecule (PDB ID: 3OTW). In H. pylori PPAT, the side chains of Thr10, Lys42, Arg88, and Tyr98 form hydrogen bonds with the CoA phosphate group. In contrast, fewer hydrogen bonds between other PPATs and CoA are observed. Interactions between Thr15, Gly17, Ile127, and Arg133 in H. pylori PPAT and CoA alter the orientation of the CoA adenine ring. To investigate the structural and kinetics mechanisms of substrate binding to the phosphopantetheine adenylyltransferase and its mutants from H. pylori, we used alanine-scanning mutagenesis, x-ray crystallography, biophysical, and steady-state kinetics of the reverse reaction approaches to answering these questions.

    摘要 I ABSTRACT I 1. INTRODUCTION: 1 1.1. HELICOBACTER PYLORI 1 1.2. THE ROLE OF PHOSPHOPANTETHEINE ADENYLYLTRANSFERASE IN THE COENZYME A SYNTHESIS PATHWAY 1 1.3. THE AIMS OF THE STUDY 3 2. MATERIALS AND METHODS 5 2.1. MATERIALS 5 2.2. SITE-DIRECTED MUTAGENESIS IN HPPPAT 5 2.3. PROTEIN EXPRESSION AND PURIFICATION 6 2.4. SODIUM DODECYL SULFATE POLYACRYLAMIDE GEL ELECTROPHORESIS (SDS-PAGE) 6 2.5. BRADFORD PROTEIN–BINDING ASSAY 7 2.6. REMOVAL OF COA FROM P8A HPPPAT AND CLARIFICATION BY UV VISIBLE ABSORPTION SPECTROSCOPY 8 2.7. REVERSE ENZYME CATALYTIC ESSAY 8 2.8. CIRCULAR DICHROISM SPECTROSCOPY 9 2.9. CRYSTAL STRUCTURE DETERMINATION OF MUTANT HPPPATS 9 2.10. STRUCTURE DETERMINATION OF MUTANT HPPPATS 10 3. RESULTS AND DISCUSSION 11 3.1. IDENTIFICATION OF HOT SPOT RESIDUES 11 3.1.1. Structure alignment and chose the mutation site 11 3.1.2. CoA binding ability in mutant HpPPATs 12 3.1.3. Circular dichroism spectroscopy 12 3.1.4. Reverse kinetic analysis 13 3.2. STRUCTURAL INSIGHTS INTO THE SUBSTRATE BINDING MODE OF WILD-TYPE AND MUTANT HPPPATS . 15 3.2.1. Structures of P8A-CoA,P8A-dPCoA and Y98A-CoA complex 15 3.2.2. Comparison of the CoA binding modes of mutant and wild-type HpPPATs 16 3.2.3. Comparison of the residues binding dPCoA in P8A-dPCoA HpPPAT and EcPPAT-dPCoA complex 17 4. FIGURES 18 5. TABLE 47 6. REFERENCE 50

    1. Kusters, J.G., A.H. van Vliet, and E.J. Kuipers, Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev, 2006. 19(3): p. 449-90.
    2. Smoot, D.T., How does Helicobacter pylori cause mucosal damage? Direct mechanisms. Gastroenterology, 1997. 113(6 Suppl): p. S31-4; discussion S50.
    3. Rubio, S., et al., The coenzyme a biosynthetic enzyme phosphopantetheine adenylyltransferase plays a crucial role in plant growth, salt/osmotic stress resistance, and seed lipid storage. Plant Physiol, 2008. 148(1): p. 546-56.
    4. Spry, C., K. Kirk, and K.J. Saliba, Coenzyme A biosynthesis: an antimicrobial drug target. FEMS Microbiol Rev, 2008. 32(1): p. 56-106.
    5. Jackowski, S. and C.O. Rock, Regulation of coenzyme A biosynthesis. J Bacteriol, 1981. 148(3): p. 926-32.
    6. Izard, T., A Novel Adenylate Binding Site Confers Phosphopantetheine Adenylyltransferase Interactions with Coenzyme A. Journal of Bacteriology, 2003. 185(14): p. 4074-4080.
    7. Rock, C.O., H.W. Park, and S. Jackowski, Role of Feedback Regulation of Pantothenate Kinase (CoaA) in Control of Coenzyme A Levels in Escherichia coli. Journal of Bacteriology, 2003. 185(11): p. 3410-3415.
    8. Vallari, D.S. and S. Jackowski, Biosynthesis and degradation both contribute to the regulation of coenzyme A content in Escherichia coli. J Bacteriol, 1988. 170(9): p. 3961-6.
    9. Gerdes, S.Y., et al., From Genetic Footprinting to Antimicrobial Drug Targets: Examples in Cofactor Biosynthetic Pathways. Journal of Bacteriology, 2002. 184(16): p. 4555-4572.
    10. Zhyvoloup, A., et al., Molecular cloning of CoA Synthase. The missing link in CoA biosynthesis. J Biol Chem, 2002. 277(25): p. 22107-10.
    11. Zhao, L., et al., Inhibitors of phosphopantetheine adenylyltransferase. European Journal of Medicinal Chemistry, 2003. 38(4): p. 345-349.
    12. Ruggiero, P., Helicobacter pylori infection: what's new. Curr Opin Infect Dis, 2012. 25(3): p. 337-44.
    13. Geerlof, A., A. Lewendon, and W.V. Shaw, Purification and characterization of phosphopantetheine adenylyltransferase from Escherichia coli. J Biol Chem, 1999. 274(38): p. 27105-11.
    14. Cheng, C.S., et al., Crystal structure and biophysical characterisation of Helicobacter pylori phosphopantetheine adenylyltransferase. Biochem Biophys Res Commun, 2011. 408(2): p. 356-61.
    15. Z. Otwinowski, W. Minor, Processing of X-ray diffraction data collected in
    oscillation mode, Methods Enzymol. Macromol. Cryst. A 276 (1997)
    307–326.
    16. Vagin, A. and A. Teplyakov, Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr, 2010. 66(Pt 1): p. 22-5.
    17. Murshudov, G.N., A.A. Vagin, and E.J. Dodson, Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr, 1997. 53(Pt 3): p. 240-55.
    18. Emsley, P. and K. Cowtan, Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr, 2004. 60(Pt 12 Pt 1): p. 2126-32.
    19. Laskowski, R.A., et al., PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 1993. 26(2): p. 283-291.
    20. Izard, T. and A. Geerlof, The crystal structure of a novel bacterial adenylyltransferase reveals half of sites reactivity. EMBO J, 1999. 18(8): p. 2021-30.
    21. Wallace, A.C., R.A. Laskowski, and J.M. Thornton, LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng, 1995. 8(2): p. 127-34.
    22. Miller, J.R., et al., The use of biochemical and biophysical tools for triage of high-throughput screening hits - A case study with Escherichia coli phosphopantetheine adenylyltransferase. Chem Biol Drug Des, 2010. 75(5): p. 444-54.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE