研究生: |
陳彤逸 Tung-Yi Chen |
---|---|
論文名稱: |
奈米氧化金屬複合材料雙極板之機械性質與物理性質 Mechanical and Physical Properties of Nano-metal oxide Composites Used In Bipolar Plate |
指導教授: |
葉銘泉
Ming-Chuen Yip |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 雙極板 、奈米氧化金屬粉末 |
外文關鍵詞: | bipolar plate, nano-metal oxide particles |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在添加奈米氧化金屬粉末改善石墨粉末/酚醛樹脂之導電特性、增強機械特性及探討經過模擬使用環境後之機械強度。石墨粉末/酚醛樹脂複合材料使用於燃料電池雙極板中,可利用大量的石墨粉末有效加強導電特性,但同時會降低機械性質,造成機械強度不足,在使用高溫高溼環境及重複使用之溫度循環影響下,會加速機強度減弱。
本研究結果指出當添加3 phr之奈米氧化鋅粉末及奈米氧化銦/錫粉末有最佳彎曲強度(61.71 、61.27 MPa)、耐衝擊強度(0.85、0.79 lb-ft/in)及拉伸強度(39.24、39.96 MPa),但添加5 phr時即造成團聚現象無法提升機械強度。隨著添加奈米氧化鋅粉末及奈米氧化銦/錫粉末增多,導電率會隨之提升至5 phr時分別為74.38、78.24 S/cm,並且添加奈米氧化鋅及奈米氧化銦/錫粉末可以有效降低空孔率至1.13 58 %、1.0430 %,但其比重卻會隨著添加之奈米氧化金屬粉末而有上升到1.6969、1.6838 g/cm2的趨勢。所有測試試片在氣體滲透測試下均能保持不漏氣,並且所有試片之腐蝕速率圴小於16 µA/cm2。
在溫溼環境85 0C/RH 85 %下,經過168小時吸溼飽和後之抗折強度,和末經溫溼環境比較約下降1.5 %~4.6 %。在溫度循環-40~125 0C,循環週次500週後彎曲強度和未經熱循環比較下降約10 %。
添加3 phr奈米氧化鋅粉末或奈米氧化銦/錫粉末時,可以提升機械性質及導電率,但添加5 phr以上的奈米氧化鋅粉末或奈米氧化銦/錫粉末會產生團聚現象而降低其機械性質。
The aim of this paper focus on increasing the graphite/phenolic composite’s electricity and mechanical properties by adding Nano-metal oxide particles, and it discusses the composite’s mechanical properties after modified environmental test. We can take advantage of adding a large number of graphite powders to efficiently increase the electricity of the bipolar plates used in fuel cell, however they also decrease the mechanical properties at the same time. Bipolar plates decreased the mechanical properties when they are used in the environment of high temperature and high humid for a long time. Environment of thermal cycles also accelerated the crack propagation and decreased the mechanical properties.
The results of this paper pointed that adding 3 phr Nano-ZnO or ITO particle had the best flexural strength (61.71、61.27 MPa), Izod impact strength (0.85、0.79 lb-ft/in) and tensile strength (39.24、39.96 MPa), but these mechanical properties couldn’t be increased when adding 5 phr Nano-metal oxide particle with the coming of the aggregation of Nano-metal oxide particle. The porosity reduced with increasing Nano-ZnO or ITO content, but the specific gravity increased with increasing Nano-ZnO or ITO content. All of these spacemen could keep gastight under the gastight test, and the corrosive current were less than 16 µA/cm2.
The spacemen under the environment of 85 0C/RH85 % for 168 hr decreased flexural strength about 1.5~4.6 % than that in the normal environment. The spacemen after 500 thermal cycles (-40~1250C) decreased flexural strength about 10 % than that in the normal environment.
1.A. J. Apply, “Iussue In Fuel Commerial,” Power Source, vol. 69, pp. 153-176 (1996)
2.“質子交換膜燃料電池之電解質” 化工,第49卷第3期 51~66頁(2002)
3.P. Costamagna and S. Srinivasan, “Quantum Jumps in the PEMFC science and technology from 1960s to the year 2000,” Part I. Fundamental scientific aspects, vol. 102, pp. 242-252 (2001)
4.J. P. Longwell, E. S. Rubin and J. Wilson, “Energy for the future,” Energy Combust. Sci., vol. 21, pp. 269-360 (1995)
5.A. Hermann, T. Chanudhuri and P. Spagnol, “Bipolar plates for PEM fuel cells: A review,” International Journal of Hydrongen Energy, vol. 30, pp. 1297-1302 (2005)
6.R. C. Makkus, A. H. Janssen, F. A. Bruijin, K. Ronald and D. A. Mallant, “Stainless steel for cost-competitive bipolar plates in PEMFCs,” Fuel Cells Bulletin Vol. 3, Issue:17, pp. 5-9, (2000)
7.D. P. Davies, P. L. Adcock, M. Turpin, and S. J. Rowen, “Bipolar plate materials for solid polymer fuel cells,” Fournal of Applied Electrochemistry, Vol. 30, pp. 101-105, (2000)
8.B. Mukesh, “Infection moldable conductive aromatic thermoplastic liquid crystalline polymer compositions,“ WO00/44005, (2000)
9.W. Mahlon, ”Composite bipolar plate for electrochemical cells,” WO00/ 25372, (2000)
10.R. Horung and G. Kappelt, ”Bipolar plate materials development using Fe-based alloys for solid polymer fuel cells,” Journal of Power Source, Vol. 72, pp. 20-21, (1998)
11.D. P. Davies, P. L. Adcock, M. Turpin and S. J. Rowe, ”Stainless steel as a bipolar plate material for solid polymer fuel cells,” Journal of Power Sources Vol. 86, Issue:1-2, pp. 237~242, (2000)
12.R. C. Makkus , A. H. H. Janssen, , F. A. de Bruijn and R. K. A. M. Mallani, “Journal of Power Sources Vol.86, Issue:1-2 pp. 274-282, (2000)
13.J. Wind, R. Spah, W. Kaiser, and G. Bohm, ” Metaliic bipolar plates for PEM fuel cells,” Journal of Power Sources Vol. 105, Issue:2, pp. 154-158
14.H. Wang, M. A. Sweikar and J. A. Turner, “Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 115, pp. 234-251, (2003)
15.K. Robberg, V. Trapp, W. Vielstich, H. A. Gasteiger and A. Lamm (Eds.), “Handbook of Fuel Cells—Fundamentals, Technology and Applications, vol. 3: Fuel Cell Technology and Applications,” Wiley & Sons, New York, pp. 306, (2003)
16.K. Ledjeff-Gey, T. Kalk, F. Mahlendorf, O. Niemzig, A.Trautmann and J.Roes, “Porable PEFC generator with propane as fuel,” Journal of Power Sources, Vol. 86, pp. 166-172, (2000)
17.W. Mahlon,“Composite bipolar plate for electrochemical cells,” WO00/ 25372, (2000)
18.http://www.h2economy.com
19.R. Blunk, M. H. A. Elhamid, D. Lisi and Y. Mikhail, “Polymeric composite bipolar plates for vehicle applications” Journal of Power Sources, Vol. 156, pp. 1511–1571, (2006)
20.R. C. Emanulson, Glastonbury, WarrenL. Luoma Manchester William A. T. , Glastonbury, “Separator Plate for electrochemical cells,” US4301222, (1981)
21.www.Plastics Technology.com
22.Chuan-Yu Yen, Shu-Hang Liao, Yu-Feng Lin, Chih-Hung Hung, Yao-Yu Lin, Chen-Chi M. Ma “Preparation and properties of high performance nanocomposite bipolar plate for full cell,” Journal of Power Sources, Vol.162, pp. 309-315, (2006)
23.A. Heinzel, F. Mahlendorf, O. Niemzig and C. Kreuz, “Injection moulded low cost bipolar plates for PEM fuel cells,” Journal of Power Sources, Vol. 131, pp. 35–40, (2004)
24.N. B. Edward and J. L. Tichard, “Carbon fiber reinforced fluorocarbon-graphite bipolar current collector-separator,” US4339322, (1982)
25.J. Huang, D. G. Baird and J. E. McGrath, ”Development of fuel cell bipolar plates from graphite filled wet-lay thermoplastic composite materials,” Journal of Power Sources, Vol. 131, pp.35-40 (2004)
26.M. K. Bisaria, “Injection moldable conductive aromatic thermoplastic liquid crystalline polymer compositions,” WO00/ 44005, (2001)
27.H. Wolf and M. Willert-Porada, ”Electrically conductive LCP–carbon composite with low carbon content for bipolar plate application in polymer electrolyte membrane fuel cell, ” Journal of Power Sources, Vol. 153, pp. 41-46, (2006)
28.Brent D. Cunningham, Jianhua Huang, Donald G. Baird “Development of bipolar plates for fuel cells from graphite filled wet-lay material and a thermoplastic laminate skin layer,” Journal of Power Sources, Vol. 165, pp. 764-773 (2007)
29.A. Heinzel, F. Mahlendorf, O. Niemzig and C. Kreuz, “Injection moulded low cost bipolar plates for PEM fuel cells,” Journal of Power Sources, Vol. 131, pp. 35-40, (2004)
30.A. M¨uller , P. Kauranen, A. von Ganski and B. Hell, “Injection moulding of graphite composite bipolar plates” Journal of Power Sources, Vol. 154, pp. 467–471, (2006)
31.H. C. Kuan , C. C. Ma, K. H. Chen and S. M. Chen, ” Preparation, electrical, mechanical and thermal properties of composite bipolar plate for a fuel cell,” Journal of Power Sources, Vol. 134, pp. 7–17, (2004)
32.L. N. Song, M. Xiao , X. H. Li and Y. Z. Meng, “Short carbon fiber reinforced electrically conductive aromatic polydisulfide / expanded graphite nanocomposites ” Materials Chemistry and Physics Vol. 93 pp. 122–128, (2005)
33.M. A. Kiselev and A. I. Kuzayev, ”Preparation and properties of silicone Modified Phenol-Formaldehyde Resin ” U.S. Patent 2685054 (1968)
34.著:村山 新一 編著:洪純仁“酚醛樹脂”復文書局
35.E. Kumpinsky, “Process Design and Control : A Study on Resol Type phenol-Formaldehyde Runaway Reactions,” Ind Eng . Chem. Res, Vol. 33, pp.285-291, (1994).
36.K. Robberg, V. Trapp, W. Vielstich, H. A. Gasteiger, and A. Lamm (Eds.), “Handbook of Fuel Cells—Fundamentals, Technology and Applications, vol. 3: Fuel Cell Technology and Applications” Wiley & Sons, New York, pp. 286, (2003)
37.J. G. Clulow, F. E. Zappitelli, C. M. Carlstrom, J. I. L. Zemsky, D. N. Busick and M. S. Wilson, “Fuel Cell Technology: Opportunities and Challenges, Topical Conference Proceedings” 2002 AIChE Spring National Meeting, New Orleans, LA, March 10–14,, pp. 417– 425, (2002)
38.K. Robberg, V. Trapp, W. Vielstich, H. A. Gasteiger and A. Lamm (Eds.), “Handbook of Fuel Cells—Fundamentals, Technology and Applications, vol. 3: Fuel Cell Technology and Applications” Wiley & Sons, New York, pp. 308–314, (2003)
39. 編著/劉吉平、郝向陽 ”奈米科學與技術” 出版者/世茂出版社 2003年12月
40.廖世傑 ”直流電漿熱反應製造奈米粉體” pp. 93
41.C. B. Ng, L. S. Schadler and R.W. Siegel, “Synthesis and Mechanical Properties of TiO2-Epoxy Nanocomposities” NanoStructured Materials, Vol.12, pp. 507-519, (1999)
42.X. Wu, Z. Wang, L. Chen and Xuejie Huang, “Ag-deposited mesocarbon microbeads as an anode in a lithium ion battery with propylene carbonate electrolyte,” Surface & Coatings Technology Vol. 186, pp. 412-415, (2004)
43.M. Zhang, and R. P. Singh, ”Mechanical reinforcement of unsaturated polyester by AL2O3 nanoparticles” Materials Letters, Vol. 58, pp. 408-412, (2004)
44.Nathanicl Chisholm, Gassan Mahfuz, Vifaya K. Rangari, Adnan Ashfaq, Shaik Jeelani, ”Cabrication and mechanical characterization of carbon/SiC-epoxy nanocomposites,” Composite Structures Vol. 67, pp. 115-124 (2005)
45.Vamshi M. Gudapati, Vinod P. Veedu, Mehrdad N. Ghasemi-Nejhad “Polymeric precursor pyrolysis for flexural property evaluation of continuous fiber ceramic nanocomposites with nanopartarticles” Composites Science and Technology, Vol. 66, pp. 3230-3240, (2006)
46.E. Tang , G. Cheng , X. Ma, X. Pang and Q. Zhao,” Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system “Applied Surface Science, Vol. 252, pp. 5227–5232, (2006)
47.J. Cho, M. S. Joshi and C. T. Sun, “Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles” Composites Science and Technology,” Vol. 66, pp. 1941-1952, (2006)
48.M. Martin, S.Hanagud, N. N. Thadhani, “Mechanical behavior of nickel+aluminum powder-reinforced eposy composites” Materials Science and Engineering A, Vol. 443, pp. 209-218, (2007)
49.X. Xia , C. Xie , S. Cai , F. Wen , C. Zhu and X. Yang, ” Effect of the loading and size of copper particles on the mechanical properties of novel Cu/LDPE composites for use in intrauterine devices” Materials Science and Engineering A, Vol. 429, pp. 329-333, (2006)
50.陳韋任”燃料電池用導電雙極板之碳奈米管/酚醛樹脂奈米複合材料備製及其性質研究”中原大學機械工程學系碩士論文(中華民國九十三年六月)
51.W. E. Beadle, J. C. C. Tsa, and R. D. Plummer, “Quick reference manual for silicon integrated circuit technology,” Bell Telephone Laboratories, (1985)
52.S. M. Sze, “Semiconductor devices physics and technoloty,” John Wiley & Sons, U. S. A. (1985)
53.Bernd Wetzel*, Patrick Rosso, Frank Haupert, Klaus Friedrich, “Epoxy nanocomposites-fracture and toughening mechanisms” Engineering Fracture Mechanics, Vol. 73, pp. 2375-2398, (2006)