簡易檢索 / 詳目顯示

研究生: 蘇蕙柔
Su, Huei-Rou
論文名稱: 利用曼陀珠效應產生之氣泡流製備O / W或W / O乳化粒子做為藥物載體平台
A Diet Coke–Mentos Reaction Derived Bubbly Flow That Can Function as a Platform for Producing O/W or W/O Emulsions as Drug Carriers
指導教授: 宋信文
Sung, Hsing-Wen
口試委員: 張燕
甘霈
劉培毅
黃倉淼
Liu, Oliver
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 15
中文關鍵詞: 亨利定律成核理論乳液藥物輸送U型管反應器
外文關鍵詞: Henry’s law, nucleation theory, emulsion, drug delivery, U-tube reactor
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 用傳統的高能量乳化方法製備藥物通常會導致藥物變質。我們利用眾所周知的Diet Coke-Mentos反應(DCMR),提出了一款U型管反應器,該反應器可以產生氣泡流用於低能量乳化平台。 U型管反應器中的液體是用液態CO2鋼瓶加壓而成的氣體過飽和溶液,作為Diet Coke。當作為Mentos的粗糙玻璃珠通過U型管反應器的左管壁進入碳酸水中時,會自發性產生劇烈的氣泡流,在右管臂的油水界面處介導有效的乳化作用,形成不同類型的乳液。由DCMR系統衍生的氣泡流,在擾動的過程中不會有明顯的溫度上升,從而保障了乳化藥物的活性。實驗結果表明,由DCMR介導的氣泡流可提供一個通用的平台,用於生產O/W或W/O乳化粒子作為藥物的載體。這種新的乳化平台可以成為一種有吸引力的方法,以小規模定制的方式配製各種藥物輸送系統,以滿足每個人對個人化藥物的需求。


    Formulation with high-energy emulsification methods often causes the drug deterioration. Taking advantage of the well-known Diet Coke–Mentos reaction (DCMR), a U-shaped tube reactor that can produce an eruption of bubbly flow that can serve as a low-energy emulsification platform, is proposed. The liquid in the U-tube reactor is a supersaturated solution of aqueous CO2, functioning as the Diet Coke. When glass beads with rough surfaces, serving as the Mentos, are dropped into the carbonated water through the left arm of the U-tube reactor, an eruptive bubbly flow is spontaneously created, mediating an effective emulsification at a compound water–oil interface in the right arm to form different types of emulsions. This DCMR-derived bubbly flow is accomplished without producing significant temperature elevation, thereby safeguarding the activity of the drug to be emulsified. Experimental results demonstrate that the DCMR-mediated bubbly flow may provide a versatile platform for the production of O/W or W/O droplets as drug carriers. This new emulsification platform can be an attractive approach in formulating a variety of drug delivery systems in a small-scale customized manner to fit the needs of each individual for personalized medicine.

    摘要...............................Ⅰ Abstract...........................Ⅱ Table of Content.….................Ⅲ List of Figures....................Ⅳ Chapter 1 Introduction.............1 Chapter 2 Materials and Methods…...3 Chapter 3 Results and Discussion...6 References.........................13

    (1) Forrester, D. M.; Pinfield, V. J. The absorption of ultrasound in emulsions: computational modelling of thermal effects. Sci. Rep. 2018, 8, 12486.
    (2) Coffey, T. S. Diet Coke and Mentos: What is really behind this physical reaction? Am. J. Phys. 2008, 76, 551−557.
    (3) Kuntzleman, T. S.; Davenport, L. S.; Cothran, V. I.; Kuntzleman, J. T.; Campbell, D. J. New demonstrations and new insights on the mechanism of the candy-cola soda geyser. J. Chem. Educ. 2017, 94, 569−576.
    (4) Enríquez, O. R.; Hummelink, C.; Bruggert, G. W.; Lohse, D.; Prosperetti, A.; van der Meer, D.; Sun, C. Growing bubbles in a slightly supersaturated liquid solution. Rev. Sci. Instrum. 2013, 84, 065111.
    (5) Feng, J.; Nunes, J. K.; Shin, S.; Yan, J.; Kong Y. L.; Prud'homme, R. K.; Arnaudov, L. N.; Stoyanov, S. D.; Stone, H. A. A scalable platform for functional nanomaterials via bubble-bursting. Adv. Mater. 2016, 28, 4047−4052.
    (6) Vega-Martínez, P.; Enríquez, O. R.; Rodríguez-Rodríguez, J. Some topics on the physics of bubble dynamics in Beer. Beverages 2017, 3, 38.
    (7) Zhang, P.; Zhang, J.; Xue, Z.; Wang, J.; Jiang L. Reliable manipulation of gas bubbles by regulating interfacial morphologies and chemical components. Mater. Horiz. 2017, 4, 665−672.
    (8) Vachaparambil, K. J.; Einarsrud, K. E. Explanation of bubble nucleation mechanisms: a gradient theory approach. J. Electrochem. Soc. 2018, 165, E504−E512.
    (9) Hassas, B. V.; Caliskan, H.; Guven, O.; Karakas, F.; Cinar, M.; Celik, M. S. Effect of roughness and shape factor on flotation characteristics of glass beads. Colloids and Surfaces A: Physicochem. Eng. Aspects 2016, 492, 88–99.
    (10) Yu, S.; Zhang, D.; Jiang J.; Xia, W. Redox-responsive pickering emulsions stabilized by silica nanoparticles and ferrocene surfactants at a very low concentration. ACS Sustainable Chem. Eng. 2019, 7, 15904–15912.
    (11) Yang, Y.; Fang, Z.; Chen X.; Zhang, W.; Xie, Y.; Chen, Y.; Liu, Z.; Yuan, W. An overview of Pickering emulsions: solid-particle materials, classification, morphology, and applications. Front. Pharmacol. 2017, 8, 287.
    (12) Nara, H.; Tanimoto, H.; Tohjima, Y.; Mukai, H. Nojiri, Y.; Katsumata, K.; Rella, C. W. Effect of air composition (N2, O2, Ar, and H2O) on CO2 and CH4 measurement by wavelength-scanned cavity ring-down spectroscopy: calibration and measurement strategy. Atmos. Meas. Tech. 2012, 5, 2689–2701.
    (13) Sander, R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 2015, 15, 4399–4981.
    (14) Bernardi, D. S.; Pereira, T. A.; Maciel, N. R,; Bortoloto, J.; Viera, G. S.; Oliveira, G. S.; Rocha-Filho P. A. Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments. J Nanobiotechnology. 2011, 9, 44.
    (15) McClements, D. J. Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 2011, 7, 2297–2316.
    (16) Carpenter, A. P.; Tran, E.; Altman, R. M.; Richmond, G. L. Formation and surface-stabilizing contributions to bare nanoemulsions created with negligible surface charge. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 9214–9129.
    (17) Mehmood T.; Ahmed A. Tween 80 and soya-lecithin-based food-grade nanoemulsions for the effective delivery of vitamin D. Langmuir 2020, 36, 2886–2892.
    (18) Khumpirapang, N.; Pikulkaew, S.; Mullertz, A.; Rades, T.; Okonogi, S. Self-microemulsifying drug delivery system and nanoemulsion for enhancing aqueous miscibility of Alpinia galanga oil. PLoS One 2017, 12, e0188848.
    (19) Destribats, M.; Faure B.; Birot, M.; Babot, O.; Schmitt V.; Backov, R. Tailored silica macrocellular foams: combining limited coalescence‐based Pickering emulsion and sol–gel process. Adv. Funct. Mater. 2012, 22, 2642–2654.
    (20) Chen, Z.; Zhou, L.; Bing, W.; Zhang, Z.; Li, Z.; Ren, J.; Qu, X. Light controlled reversible inversion of nanophosphor-stabilized Pickering emulsions for biphasic enantioselective biocatalysis. J. Am. Chem. Soc. 2014, 136, 7498–7504.

    QR CODE