簡易檢索 / 詳目顯示

研究生: 王中樺
Wang, Chung-Hwa
論文名稱: 以蠶絲蛋白為閘極絕緣層之可撓性有機薄膜電晶體
Flexible organic thin film transistors with silk fibroin as gate dielectric
指導教授: 黃振昌
口試委員: 黃振昌
徐碩鴻
甘炯耀
冉曉雯
鄭裕庭
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 149
中文關鍵詞: 有機薄膜電晶體五苯環蠶絲介電層
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究蠶絲蛋白介電層在有機薄膜電晶體的應用,並探討改變蠶絲蛋白之二級結構對於有機薄膜電晶體元件電性的變化。以蠶絲蛋白為介電層,沈積於軟性塑膠基板之五苯環有機薄膜電晶體,具有非常高的飽和載子遷移率23 cm2v-1s-1,且元件可在很低的工作電壓 -3 V操作。蠶絲蛋白具有很好的絕緣特性,可利用溶液製程的方式塗佈於軟性塑膠基板上面,所製成的五苯環電晶體具有很高的載子移動率,讓有機薄膜電晶體可以與金屬氧化物薄膜電晶體互相匹敵,提升五苯環有機薄膜電晶體在低電壓與高頻元件的應用可能性。
    本論文發現在蠶絲蛋白成膜時,可利用烤乾的溫度來改變它的二級結構,當結構中的彎子越來越多時,有利於五苯環初期的晶體成長,並可降低元件界面缺陷密度,得到好的元件載子移動率。最佳的元件載子移動率發生於303 K,具有高的飽和載子遷移率21 cm2v-1s-1,隨著蠶絲蛋白成膜溫度從303 K 提高到393 K,彎子的結構隨著烤乾溫度升高而減少,其五苯環電晶體的元件電子特性也隨著下降。當成膜溫度達到433 K時,蠶絲蛋白膜的本身彎子的結構巨幅的下降,伴隨著具結晶性的褶板二級結構與自由基羰基的產生,導致有機薄膜電晶體的元件特性大幅下降。
    蠶絲蛋白薄膜在經過甲醇浸泡處理後,可增加薄膜的二級結構的結晶性,蠶絲蛋白薄膜從水可溶性轉變形成一個水不可溶性的薄膜,因伴隨著褶板二級結構的產生,其有機薄膜電晶體的飽和載子遷移率從處理前的25 cm2V-1s-1巨幅降低為8.1 cm2V-1s-1。


    Silk fibroin thin film is utilized as the gate insulating material for pentacene organic thin film transistors (OTFTs) fabricated on plastic substrate. A very high field effect mobility (μFE) value of 23.2 cm2V-1s-1 in the saturation regime and a low operation voltage of -3V for the pentacene OTFT made on a flexible polyethylene terephthalate (PET) plastic substrate with silk fibroin as the gate dielectric. Silk fibroin is an insulating protein, which is coated on PET at room temperature by a low-cost solution process. An inverter with a switching speed of 1 MHz is achieved even for the OTFT with large channel length (50 μm). The high device performance enables OTFTs to outperform amorphous semiconducting oxide TFTs such as a-InGaO3(ZnO)5 (a-IGZO) TFTs. The pentacene OTFTs have immediate and profound implications for flexible electronics operated at high switching frequency and low voltage.
    The secondary structures of silk fibroin thin films can be tuned by varying the casting temperature. Larger amount of turn is in favor of the formation of orthorhombic phase of pentacene and lower interface trap density, which leads to higher field-effect mobility. The best device characteristics occur at a casting temperature of 303 K, which exhibit a very high field-effect mobility value of 21 cm2V-1s-1 in the saturation regime. The device characteristics degrade with the reduction of turn when casting temperature increases from 303 to 393 K. An abrupt reduction of turn occurs at 433 K, accompanying with the appearance of free C=O group and β-sheet. The corresponding device performance is greatly reduced.
    We also present pentacene OFETs with the water-insoluble silk fibroin film by a post-treatment with methanol as the gate dielectric. The water-soluble silk fibroin dielectric exhibit high field-effect mobility value (μFE,sat) 25 cm2V-1s-1. The μFE,sat degrade to 8.1 cm2V-1s-1 owing to the formation of β-sheet crystalline structure in the water-insoluble silk fibroin film.

    Table of content Abstract (Chinese) I Abstract (English) III Acknowlegment (Chinese) V Table of content VI List of Tables XI List of Figures XII Chapter 1 Introduction 1 1-1 Background of organic thin film transistors 1 1-2 Problem Statement 5 1-3 Motivation and objectives 8 1-4 Organization of the thesis 9 References 11 Chapter 2 Literature review 14 2-1 Organic thin film transistors 14 2-1-1 Device structures 14 2-1-2 Organic semiconductors 16 2-1-3 Gate insulators 23 2-1-4 Source and drain contact 28 2-2 Carrier transport in organic semiconductors 29 2-2-1 Band-like transport 30 2-2-2 Hopping model 32 2-2-3 Multiple trapping and release model 34 2-3 Critical factors for the interface of semiconductor-insulator 37 2-3-1 Surface energy 38 2-3-2 Surface polarity or surface hydrophobicity 39 2-3-3 Surface roughness 40 2-4 Silk fibroin 42 2-4-1 Silk protein 42 2-4-2 Regenerated Silk fibroin 45 2-4-3 Silk fibroin structure 46 2-4-4 Structure characteristics of Silk fibroin 48 2-4-5 Structure transformation of Silk fibroin 50 2-5 Transistor devices operation and parameter extraction 51 2-5-1 Device operation 51 2-5-2 Parameter extraction 54 References 57 Chapter 3 Experimental 73 3-1 Experimental flow chart 74 3-2 Standard procedure of silk fibroin solution 74 3-3 Thermal evaporation system 75 3-4 OTFT and MIM device fabrication 76 3-5 Electrical measurement system 79 3-6 Atomic force microscope 81 3-7 Field emission scanning electron microscope 82 3-8 X-ray diffraction 83 3-9 Fourier transform Infrared spectroscopy 84 References 86 Chapter 4 Flexible organic thin film transistors with silk fibroin as gate dielectric 87 4-1 Introduction 88 4-2 Experimental 91 4-3 Results and Discussion 94 4-3 Conclusion 103 References 104 Chapter 5 Casting of silk fibroin thin films for high mobility pentacene field-effect transistors 108 5-1 Introduction 109 5-2 Experimental 111 5-3 Results and Discussion 112 5.3.1 Effect of drying on electrical characteristics of pentacene FETs 112 5.3.2 Effect of drying on the protein structures of silk fibroin 120 5.3.3 Correlation of device characteristics with structures of silk 129 5-4 Conclusion 133 References 134 Chapter 6 Effect of methanol on the high mobility pentacene field effect transistors with silk fibroin as the gate dielectric 137 6-1 Introduction 137 6-2 Result and discussion 139 References 144 Chapter 7 Conclusions 145 Publications 147

    第一章
    [1] M. Mizukami, N. Hirohata, T. Iseki, K. Ohtawara, T. Tada, S. Yagyu, T. Abe, T. Suzuki, Y. Fujisaki, Y. Inoue, S. Tokito, and T. Kurita. IEEE Electron Device Lett. 27:249, 2006.
    [2] K. Nomoto, N. Hirai, N. Yoneya, N. Kawashima, M. Noda, M. Wada, and J. Kasahara. IEEE Trans. Electron Devices, 52:1519, 2005.
    [3] Y. Kato, T. Sekitani, M. Takamiya, M. Doi, K. Asaka, T. Sakurai, and T. Someya. IEEE Trans. Electron Devices, 54:202, 2007.
    [4] Sony Develops a "Rollable" OTFT*1-driven OLED Display that can wrap around a Pencil Online source. Available at: http://www.sony.net/SonyInfo/News/Press/201005/10-070E/
    [5] D. Sabbagh. 'Moving newspaper' on flexible screen to be launched within months. The Times. Online source. Available at: http://business.timesonline.co.uk/tol/business/industrysectors/technology/article6736859.ece, August 3, 2009.
    [6] C. Hammerschmidt. RF energy powers printed lighting device. EE Times Europe. Online source. Available at:
    http://eetimes.eu/showArticle.jhtml?articlelID=218600728
    [7] Jahinuzzaman S M, Sultana A, Sakariya K, Servati P and Nathan A 2005 Appl. Phys. Lett.
    [8] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 2004, 432, 488.
    [9] T. Kamiya, K. Nomura, H. Hosono Sci. Technol. Adv. Mater. 11 (2010)
    [10] H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers. Nature, 457:706-710, 2009.
    [11] T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai. Proc. Natl. Acad. Sci., 101:9966, 2004.
    [12] D. Mcnally. Army to display flexible technology Online source. Available at: http://www.army.mil/article/31123/
    [13] P. Alt and P. Pleshko. IEEE Trans. Electron Devices, 21:146-155, 1974.
    [14] W. A. MacDonald, Advanced Flexible Polymeric Substrates in Organic Electronics, H. Klauk (ed.), pp. 165, Wiley-VCH, 2006.
    [15] J.I. Pankove, Semiconductors and Semimetals: Hydrogenated Amorphous Silicon, Part D: Device applications. pp. 9, Academic Press, New York, 1984.
    [16] M. K. Sah and K. Pramanik International Journal of Environmental Science and Development, Vol.1, No.5, 2010
    第二章

    [1] D. Gamota, P. Brazis, K. Kalyanasundaram, J. Zhang, Printed organic and molecular electronics (Kluwer Academic Pub, USA, 2004) p350
    [2] C.A. Di, Y. Liu, G. Yu, and D. Zhu, Acc. Chem. Res. 42,1573 (2009)
    [3] A. Facchetti, Materialstoday 10,3 (2007)
    [4] D. J. Carswell, Nature 173, 736 (1954)
    [5] H. Klauk, D. J. Gundlach, J. A. Nichols, T. N. Jackson, IEEE Trans. Electron Dev. 46, 1258 (1999)
    [6] Z. Rang, A. Haraldsson, D. M. Kim, P. P. Ruden, M. I. Nathan, R. J. Chesterfield, and C. D. Frisbie, Appl. Phys. Lett. 79, 2731 (2001)
    [7] G. Horowitz, D. Fichou, X. Peng and F. Garnier, Synth. Met. 41, 1127 (1991)
    [8] O. D. Jurchescu, M. Popinciuc, B. J. van Wees and T.T. M. Palstra Adv. Mater. 19, 688 (2007)
    [9] S. Lee, B. Koo, E. Lee, H. Park and H. Kim, Appl. Phys. Lett. 88, 162109 (2006)
    [10] M. M. Payne, S. R. Parkin, J. E. Anthony, C. Kuo and T. N. Jackson J. Am. Chem. Soc. 127, 4969 (2005)
    [11] T. Mori, Condens. Matter 20,184010 (2008)
    [12] R. D. McCullough, Adv. Mater. 10, 93 (1998)
    [13] A. Assadi, C. Svensson, M. Willander, and O. Inganäs, Appl. Phys. Lett. 53, 195(1988)
    [14] A. Babel, S. A. Jenekhe, Synth. Met. 148, 169 (2005)
    [15] A. Zen, M. Saphiannikova,; D. Neher,; U. Asawapirom,; U. Scherf, Chem. Mater.17, 781 (2005)
    [16] A.C. Arias, J. D. MacKenzie, I. McCulloch, J. Rivnay and A. Salleo, Chem. Rev, 110, 3 ( 2010)
    [17] Y. Shirota, H. Kageyama, Chem. Rev. 107, 953 (2007)
    [18] H. Wada, K. Shibata, Y. Bando and T. Mori J. Mater. Chem., 2008, 18, 4165-4171
    [19] O. D. Jurchescu, J. Baas and T. T. M. Palstra, Appl. Phys. Lett., 84, 3061 (2004)
    [20] T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith and T. D. Jones, Mat. Res. Soc. Symp. Proc. 771, 169 (2003)
    [21] T. W. Kelley, P. F. Baude, C. Gerlach, D. E. Ender, D. Muyres, M. A. Haase, D. E. Vogel and S. D. Theiss, Chem. Mater. 16, 4413 (2004)
    [22] Klauk, H.; Halik, M.; Zschieschang, U.; Schmid, G.; Radlik, W.; Weber, W. J. Appl. Phys. 92, 5259 (2002)
    [23] N. C. Greenham, C. D. Dimitrakopoulos, and C. D. Frisbie, Mater. Res. Soc. Symp. Proc. v771, p169, (2003)
    [24] S. Lee, B. Koo, J. Shin, E. Lee, and H. Park Appl. Phys. Lett. 88, 162109 (2006)
    [25] Y. Jang. D. H. Kim, Y. D. Park, J. H. Cho, M. Hwang, and K. Cho Appl. Phys. Lett. 88, 072101 (2006)
    [26] Jurchescu O. D., P. Mihaita, J. van Wees Bart, and Palstra T. M. Adv. Mater. 19, 688 (2007)
    [27] H. S. Tan, N. Mathews, T. Cahyadi, F. R. Zhu and S. G. Mhaisalkar Appl. Phys. Lett. 94, 263303 (2009)
    [28] X. N. Sun , L. Zhang , Dr. C. A. Di , Y. G. Wen , Dr. Y. L. Guo , Y. Zhao ,Prof. G. Yu , Prof. Y. Q. Liu Adv. Mater. 23, 3128 (2011)
    [29] W.Y. Chou, C.W. Kuo, C.W. Chang, B. L. Yeh and M. H. Chang J. Mater. Chem. 20, 5474 (2010)
    [30] H. Klauk, U. Zschieschang, J. Pflaum, M. Halik, Nature, 445, 745 (2007).
    [31] Roberts, M. E.; Mannsfeld, S. C. B.; Queralto, N.; Reese, C.; Locklin, J.; Knoll, W.; Bao, Z. Proceedings of the National Academy of Sciences of the United States of America 105, 12134 (2008)
    [32] Roberts, M. E.; Mannsfeld, S. C. B.; Tang, M. L.; Bao, Z. Chem. Mater. 2008, 20 (23), 7332–7338.
    [33] Klauk, H.; Halik, M.; Zschieschang, U.; Schmid, G.; Radlik, W.; Weber, W. J. Appl. Phys. 2002, 92 (9), 5259–5263.
    [34] Ahn, T.; Kima, J. W.; Choia, Y.; Yi, M. H. Organic Electronics 2008, 9 (5), 711–720.
    [35] Huang, C.; West, J. E.; Katz, H. E. AdV. Funct. Mater. 2007, 17 (1), 142-153.
    [36] Unnia, K. N. N.; Pandeya, A. K.; Nunzi, J.-M. Chem. Phys. Lett. 2005, 407 (1-3), 95–99.
    [37] Jang, Y.; Kim, D. H.; Park, Y. D.; Cho, J. H.; Hwang, M.; Cho, K. Appl. Phys. Lett. 2006, 88 (7), 072101.
    [38] Chou, W.-Y.; Cheng, H. L. Adv. Funct. Mater. 2004, 14 (8), 811–815.
    [39] Chua, L. L.; Ho, P. K. H.; Sirringhaus, H.; Friend, R. H. Appl. Phys. Lett. 2004, 84 (17), 3400–3402.
    [40] Kim, S. H.; Yang, S. Y.; Shin, K.; Jeon, H.; Lee, J. W.; Hong, K. P.; Park, C. E. 2006, 89 (18), 183516.
    [41] Yoon, M. H.; Yan, H.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127 (29), 10388–10395.
    [42] Kim, C.; Facchetti, A.; Marks, T. J. Science 2007, 318 (5847), 76–80.
    [43] Yoon, M. H.; Facchetti, A.; Marks, T. J. Proc. Natl. Acad. Sci. U.S.A. 2005, 102 (13), 4678–4682.
    [44] Rutenberg, I. M.; Scherman, O. A.; Grubbs, R. H.; Jiang, W.; Garfunkel, E.; Bao, Z. J. Am. Chem. Soc. 126, 4062 (2004)
    [45] Halik, M.; Klauk, H.; Zschieschang, U.; Schmid, G.; Dehm, C.; Schutz, M.; Maisch, S.; Effenberger, F.; Brunnbauer, M.; Stellacci, F. Nature 2004, 431 (7011), 963–966.
    [46] Park, Y. D.; Kim, D. H.; Jang, Y.; Hwang, M.; Lim, J. A.; Cho, K. Appl. Phys. Lett. 2005, 87 (24), 243509.
    [47] D. Gamota, P. Brazis, K. Kalyanasundaram, J. Zhang, Printed organic and molecular electronics (Kluwer Academic Pub, USA, 2004) p373
    [48] M. Ahles; R. Schmechel, H. V. Seggern, Appl. Phys. Lett. 85, 4499 (2004)
    [49] T.Yasuda, T. Tsutsui, Chem. Phys. Lett., 402, 395 (2005)
    [50] Yasuda T, Goto T, Fujita K and Tsutsui T Appl. Phys.Lett. 85, 2098 (2004)
    [51] M. Gad-el-Hak, The MEMS Handbook (CRC Press, FL, 2002) p16-55
    [52] C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99(2 002)
    [53] Y. H. Lo, Emerging Optoelectronic Technologies and Applications
    (world scientific,1997) p251
    [54] B.G. Yacobi, Semiconductor Materials: An Introduction to Basic Principles, (Springer, Berlin 2003) p70
    [55] B.G. Yacobi, Semiconductor Materials: An Introduction to Basic Principles, (Springer, Berlin 2003) p61
    [56] C. I. Ho, Investigations of Temperature and Optical Illumination on Organic Thin Film Transistors for AMLCD Applications, (NSYSU, M.S. thesis, 2005) p6
    [57] O. Ostroverkhova, D. G. Cooke, S. Shcherbyna, R. F. Egerton, F. A. Hegmann, R. R. Tykwinski, and J. E. Anthony,. Phys. Rev. B 71, 35204 (2005).
    [58] Podzorov, V., Menard, E., Rogers, J. A. & Gershenson, M. E. Phys. Rev. Lett. 95, 226601 (2005).
    [59] D. Braga, and G. Horowitz, Adv. Mater. 21,1473 (2009).
    [60] P. H. Wöbkenberg, ThinFilm Transistors for Large Area Opto/Electronics ( Imperial College, Ph.D. thesis, 2009) p35
    [61] Z. An, Perylene-based Materials: Potential Components in Organic Electronics and Optoelectronics (Georgia Institute of Technology, Ph.D. thesis, 2005) p6
    [62] W Warta, R.Stehle, N.Karl, Appl. Phys. A 36, 163 (1985).
    [63] F. So, Organic Electronics: Materials, Processing, Devices and Applications (CRC Press, FL, 2002) p66
    [64] A. Miller, and E. Abrahams, Phys. Rev. 120, 745 (1960)
    [65] A. K. Tripathi, Structural and Electronic Characterization of Single Crystals of Ambipolar Organic Semiconductors: Diindenoperylene and Diphenylanthracene (Indien, Ph.D.thesis, 2008) p35
    [66] C. Karnutsch, Low threshold organic thin-film laser devices (Cuvillier Verlag Gottingen, 2007) p13.
    [67] P. M. Borsenberger, W.T. Gruenbaum and E. H. Magin, Jpn. J. Appl. Phys. 35, 2698 (1996)
    [68] G. Dennler, N. S. Sariciftci, and C. J. Brabec, Conjugated polymer-based organic solar cells in Semiconducting Polymers, 2nd ed., edited by G. Hadziioannou and G. Malliaras (Wiley-VCH Verlag GmbH, Weinheim, 2006). p498
    [69] P. G. Le Comber and W. E. Spear, Phys. Rev. Lett. 25, 509 (1970)
    [70] G. Meller, T. Grasser, Advances in Polymer Science 223 (Springer Verlag, 2009) p123
    [71] G. Hadziioannou and G. G. Malliaras, Semiconducting Polymers, Chemistry, Physics and Engineering 2 (Wiley-VCH, Weinheim, 2007) p599
    [72] R.Ruiz, A. Papadimitratos, A. C. Mayer and G. G. Malliaras, Adv. Mater. 17 ,1795 (2005)
    [73] X. Sun, C. A. Di and Y. Liu, J. Mater. Chem. 20, 2599 (2010)
    [74] H. W. Zan and C. W. Chou, Jpn. J. Appl. Phys. 48, 031501 (2009)
    [75] S.Y. Kwak, C. G. Choi, and B. S. Bae, Electrochem. Solid-State Lett. 12, G37 (2009)
    [76] D. H. Kim, D. W. Kim, K. S. Kim, H. J. Kim, J. S. Moon, M. P. Hong, B. S. Kim, J. H. Shin Y. M. Kim, K. K.Song and S. S. Shin Jpn. J. Appl. Phys. 47,5672 (2008)
    [77] S. Y. Yang, K. Shin and C. E. Park, Adv. Funct. Mater.15,1806 (2005)
    [78] T. Umeda, D. Kumaki and S. Tokito, J. Appl. Phys. 105, 024516 (2009)
    [79] H. W. Zan, K. H. Yen , P. K. Liu , K. H. Kc, C. H. Chen, J. Hwang, Organic Electronic 8, 450 (2007)
    [80] Janos Veres, Simon Ogier, and Giles Lloyd, Chem. Mater., 16, 4543-4555 (2004)
    [81] Sirringhaus, H.; Wilson, R. J.; Friend, R. H.; Inbasekaran,M.; Wu, W.; Woo, E. P., Appl. Phys. Lett., 77, 406-408 (2000)
    [82] Gong Gu, Michael G. Kane, James E. Doty, and Arthur H. Firester Appl. Phys. Lett. 87, 243512 (2005)
    [83] S. H. Kim, H. Yang, S. Y. Yang, K. Hong, D. Choi, C. Yang, D. S. Chung and C. E. Park, Org. Electron. 9, 673 (2008)
    [84] X. Sun, C. A. Di and Y. Liu, J. Mater. Chem. 20, 2599 (2010)
    [85] Lukas, S., et al., Phys. Rev. Lett. (2001) 88, 028301
    [86] Muller, E. M., and Marohn, J. A., Adv. Mater. (2005) 17, 1410
    [87] Horowitz, G., and Hajlaoui, M. E., Adv. Mater. (2000) 12, 1046
    [88] Steudel, S., et al., Appl. Phys. Lett. (2004) 85, 4400
    [89] Knipp, D., et al., J. Appl. Phys. (2003) 93, 347
    [90] Knipp, D., et al., Appl. Phys. Lett. (2003) 82, 3907
    [91] Fritz, S. E., et al., J. Phys. Chem. B. (2005) 109, 10574
    [92] Shen Y., Johnson M.A. and Martin D.C., Macromolecules, 31, 1998, 8857-8864.
    [93] Zhao J., Zhang Z., Wang S., Sun X., Zhang X., Chen J., Kaplan D.L., Jiang X., Bone, 45, 2009, 517–527.
    [94] Stancu I.C., Filmon R., Cincu C., Marculescu B., Zaharia C., Turmen Y., Basle M.F., Chappard D., Biomaterials, 25(2), 2003, 202-213.
    [95] Minoura N., Aiba S.I., Higuchi M., Gotoh Y., Tsukada M., Imai Y., Biochemical and Biophysical Research Communications, 208(2), 1995,511-516.
    [96] Minoura N., Tsukada N. and Nagura M., Biomaterials, 11, 1991, 430-434.
    [97] M. Mondal, K. Trivedy and S. Nirmal Kumar Caspian, J. Env. Sci. 2007, Vol. 5 No. 2 pp. 63~76
    [98] Sofia, S., McCarthy, M.B., Gronowicz, G., Kaplan, D.L. Journal of Biomedical Materials Research 2001; 54(1):139-148.
    [99] Meinel, L., Hofmann, S., Karageorgiou, V., Kirker-Head, C., McCool, J., Gronowicz, G., Zichner, L., Langer, R.,Vunjak-Novakovic, G., Kaplan, D.L. 2005; 26(2):147-155.
    [100] Gupta, M.K., Khokhar, S.K., Phillips, D.M., Sowards, L.A., Drummy, L.F., Kadakia, M.P., Naik, R.R. Langmuir 2007; 23(3):1315-1319.
    [101] Jin, H.J., Park, J., Valluzzi, R., Cebe, P., Kaplan, D.L. 2004; 5(3):711-717.
    [102] Arai, T., Freddi, G., Innocenti, R., Tsukada, M. Journal of Applied Polymer Science 2004; 91(4):2383-2390.
    [103] Wang, Y.Z., Blasioli, D.J., Kim, H.J., Kim, H.S., Kaplan, D.L. Biomaterials 2006; 27(25):4434-4442.
    [104] Li, M., Wu, Z., Zhang, C., Lu, S., Yan, H., Huang, D., Ye, H. Journal of Applied Polymer Science 2001; 79(12):2192-2199.
    [105] Nazarov, R., Jin, H.J., Kaplan, D.L. Biomacromolecules 2004; 5(3):718-726.
    [106] Aoki, H., Tomita, N., Morita, Y., Hattori, K., Harada, Y., Sonobe, M., Wakitani, S., Tamada, Y. 2003; 13(4):309-316.
    [107] Chen, C., Chuanbao, C., Xilan, M., Yin, T., Hesun, Z. Polymer 2006; 47(18):6322-6327.
    [108] Altman, G.H., Horan, R.L., Lu, H.H., Moreau, J., Martin, I., Richmond, J.C., Kaplan, D.L. Biomaterials 2002; 23 4131-4141.
    [109] Fini, M., Motta, A., Torricelli, P., Giavaresi, G., Nicoli Aldini, N., Tschon, M., Giardino, R., Migliaresi, C. Biomaterials 2005; 26 3527
    [110] Kim, U.J., Park, J., Li, C., Jin, H.J., Valluzzi, R., Kaplan, D.L. Biomacromolecules 2004; 5(3):786-792.
    [111] Tanaka, T., Hirose, M., Kotobuki, N., Ohgushi, H., Furuzono, T., Sato, J. Materials Science and Engineering: C 2007; 27, 817
    [112] Furuzono, T., Kishida, A., Tanaka, J. Journal of Materials Science: Materials in Medicine 2004; 15(1): 19-23.
    [113] K. Mita, S. Ichimura, M. Zama, T. James, J. Mol. Biol. 203 (1988) 917.
    [114] T. Asakura, A. Kuzuhara, R. Tabeta, H. Saito, Macromolecules 18 (1985) 1841.
    [115] M. Tsukada, G. Freddi, J.S. Crighton, J. Polym. Sci. B32 (1994) 243.
    [116] B. Lotz, F.C. Cesari, Biochimie 61 (1979) 205.
    [117] R.E. Marsh, R.B. Corey, L. Pauling, Biochem. Biophys. Acta 16 (1955) 1.
    [118] J. Magoshi, Y. Magoshi, S. Nakamura, Silk Polymers, in: D.L. Kaplan, W.W. Adams, B. Farmer, C. Viney (Eds.), ACS Symposium Series 544, American Chemical
    [119] S.J. He, R. Valluzzi, S.P. Gido Int. J. Biol. Macromol., 24 (1999), p.187
    [120] Parker, F. S. Application of Infrared Spectroscopy in Biochemistry, Biology and Medicine; Plenum Press: New York, 1971.
    [121] Byler, D. M.; Susi, H. Biopolymers 1986, 25, 269.
    [122] Surewicz, W. K.; Mantsh, H. H. Biochim. Biophys. Acta 1988, 952, 115.
    [123] Haris, P. I.; Chapman, D. Biopolymers 1995, 37, 251.
    [124] A. Jabs Determination of Secondary Structure in Proteins by Fourier Transform Infrared Spectroscopy Online source. Available at: http://www.imb-jena.de/ImgLibDoc/ftir/IMAGE_FTIR.html
    [125] B. D. Lawrence, F. Omenetto, K. Chui, D. L. Kaplan, J. Mater. Sci. 2008, 43, 6967.
    [126] X. Wang, H. J. Kim, P. Xu, A. Matsumoto, D. L. Kaplan, Langmuir 2005, 21, 11335-11341
    [127] H, -J. Jin, D. L. Kaplan, Nature 2003, 424,1057.
    [128] V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, J. L Brédas. Chem. Rev. 107, 926  (2007)
    [129] G. Horowitz, Adv. Mater.10, 365 (1998)
    [130] D. Braga, and G. Horowitz , Adv. Mater. 21,1473 (2009)
    [131] Gilles Horowitz, Adv. Mater., 10, 365 (1998)
    [132] K.N. Narayanan Unni, Sylvie Dabos-Seignon, and Jean-Michel Nunzi, J. Phys. D:Appl. Phys 38, 1148 (2005)
    第三章

    [1] Hyde, A. J. & Wippler, C. J. Polymer Sci. 30, 1083-1088 (1962).
    [2] Evaluation of gate oxides using a voltage step quasi-static CV method http://cp.literature.agilent.com/litweb/pdf/5988-1025EN.pdf
    [3] H. Fujita, Micromachines as tools for nanotechnology (Springer Verlag, New York, 2003) p124
    [4] M. Birkholz, P. F. Fewster, C. Genzel, Thin film analysis by X-ray scattering (John Wiley & Sons Inc, Germany, 2006) p10
    [5] Min, B.M., Jeong, L., Nam, Y.S., Kim, J.M., Kim, J.Y., Park, W.H., 2004. Int. J. Biol. Macromol. 34, 281–288.
    [6] Kong, X.D., Cui, F.Z., Wang, X.M., Zhang, M., Zhang, W., 2004. J. Cryst. Growth 270 (1–2), 197–202.
    [7] Magnani, A., Roncolini, M.C., Barbucci, R., 1991 Mod. Aspects Protein Adsorpt. Biomater., 81
    第四章

    [1] G. H. Gelinck, H. E. A. Huitema, E. V. Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H. Van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. Van Rens, D. M. De Leeuw, Nat. Mater. 2004, 3, 106.
    [2] J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, P. Drzaic, Proc. Nat. Acad. Sci. USA 2001, 98, 4835.
    [3] C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, Appl. Phys. Lett. 2002, 80, 1088.
    [4] E. Cantatore, T. C. T. Geuns, G. H. Gelinck, E. V. Veenendaal, A. F. A. Gruijthuijsen, L. Schrijnemakers, S. Drews, D. M. de Leeuw, IEEE J. Solid-State Circuits 2007, 42, 84.
    [5] P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D.V. Muyres, S. D. Theiss, Appl. Phys. Lett. 2003, 82, 3964.
    [6] J. T. Mabeck, G. G. Malliaras, Anal. Bioanal. Chem. 2006, 384, 343.
    [7] T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, Proc. Natl. Acad. Sci. USA 2004, 101, 9966.
    [8] J. Veres, S. Ogier, G. Lloyd, Chem. Mater. 2004, 16, 4543.
    [9] C. Bartic, H. Jansen, A. Campitelli, S. Borghs, Organic Electronics 2002, 3, 65.
    [10] M. H. Yoon, H. Yan, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2005, 127, 10388.
    [11] T. G. Kim, E. H. Jeong, S. C. Lim, S. H. Kim, G. H. Kim, S. H. Kim, H. Y. Jeon, J. H. Youk, Synth. Metals 2009, 159, 749.
    [12] H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, J. Appl. Phys. 2002, 92, 5259.
    [13] H. W. Zan, K. H. Yen, P. K. Liu, K. H. Ku, C. H. Chen, J. C. Hwang , Organic Electronics 2007, 8, 450.
    [14] T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith, T. D. Jones, Mater. Res. Soc. Symposium Proceedings 2003, 771, 169.
    [15] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 2004, 432, 488.
    [16] R. E. Marsh, R. B. Corey, L. Pauling, Biochimica et Biophysica Acta. 1955, 16, 1.
    [17] X. Hu, D. Kaplan, P. Cebe, Macromolecules 2006, 39, 6161.
    [18] E. S. Sashina, A. Y. Golubikhin, N. P. Novoselov, E. S. Tsobkallo, M. Zaborskii, Y. Goralskii, Russ. J. Appl. Chem. 2009, 82, 898.
    [19] D. H. Kim, Y. S. Kim, J. Amsden, B. Panilaitis, D. L. Kaplan, F. G. Omenetto, M. R. Zakin, J. A. Rogers, Appl. Phys. Lett. 2009, 95, 133701.
    [20] S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, F. G. Omenetto, Adv. Mater. 2009, 21, 2411.
    [21] A. J. Hyde, C. Wippler, J. Polymer Sci. 1962, 30, 1083.
    [22] J. Magoshi, Kobunshi Ronbunshi 1974, 31, 456.
    [23] J. S. Lee, S. Chang, S. M. Koo, S. Y. Lee, IEEE Electr. Device Lett. 2010, 31, 225.
    [24] U. K. N. Narayanan, S. D. Seignon, J. M. Nunzi, J. Phys. D: Appl. Phys. 2005, 38, 1148.
    [25] J. H. Cho, J. Lee, Y. Xia, B. Kim, Y. Y He, M. J. Renn, T. P. Lodge, C. D. Frisbie, Nat. Mater. 2008, 7, 900.
    [26] I. P. M. Bouchoms, W. A. Schoonveld, J. Vrijmoeth, T. M. Klapwijk, Synth. Metals 1999, 104, 175.
    [27] H. L. Cheng, Y. S. Mai, W. Y. Chou, L. R. Chang, X. W. Liang, Adv. Funct. Mater. 2007, 17, 3639.
    [28] V. Y. Butko, X. Chi, D. V. Lang, A. P. Ramirez, Appl. Phys. Lett. 2003, 83, 4773.
    [29] O. D. Jurchescu, M. Popinciuc, B. J. v. Wees, T. T. M. Palstra, Adv. Mater. 2007, 19, 688.
    [30] M. F. Chang, P. T. Lee, IEEE Electr. Device Lett. 2009, 30, 133.
    第五章

    [1] Zhou C.-Z.; Confalonieri F.; Jacquet M.; Perasso R.; Li Z.-G.; Janin J. Proteins 2001, 44, 119.
    [2] Murphy A. R.; Kaplan D. L. J. Mater. Chem. 2009, 19, 6443.
    [3] Omenetto, F.; Kaplan, Science 2010, 329, 528.
    [4] Tsukada, M.; Gotoh, Y.; Nagura, M.; Minoura, N.; Kasai, N.; Freddi, G. J. Polym. Sci. Part Polym. Phys. 1994, 32, 961.
    [5] Jin, H. J.; Park, J.; Karageorgiou, V.; Kim, U. J.; Valluzzi, R.; Cebe, P.; Kaplan, D. L. Adv. Funct. Mater. 2005, 15, 1241.
    [6] Matsumoto, A.; Chen, J.; Collette, A. L.; Kim, U. J.; Altman, G. H.; Cebe, P.; Kaplan, D. L. J. Phys. Chem. B 2006, 110, 21630.
    [7] Lawrence, B. D.; Omenetto, F.; Chui, K.; Kaplan, D. L. J. Mater. Sci. 2008, 43, 6967.
    [8] Wang, C. H.; Hsieh, C.Y.; Hwang, J.-C. Adv. Mater. 2011, 23, 1630.
    [9] Kim, T. G.; Jeong, E. H.; Lim, S. C.; Kim, S. H.; Kim, G. H.; Kim, S. H.; Jeon, H. Y.; Youk, J. H. Synth. Metals 2009, 159, 749.
    [10] Klauk, H.; Halik, M.; Zschieschang, U.; Schmid, G;. Radlik, W. J. Appl. Phys. 2002, 92, 5259.
    [11] Zan, H. W.; Yen, K. H.; Liu, P. K.; Ku, K. H.; Chen, C. H.; Hwang, J. C. Organic Electronics 2007, 8, 450.
    [12] Kelley, T. W.; Muyres, D. V.; Baude, P. F.; Smith, T. P.; Jones, T. D. Mater. Res. Soc. Symposium Proceedings 2003, 771, 169.
    [13] Halik, M.; Klauk, H.; Zschieschang, U.; Schmid, G.; Dehm, C.; Schütz, M.; Maisch, S.; Effenberger, F.; Brunnbauer, M.; Stellacci, F. Nature 2004, 431, 963.
    [14] Nomura K.; Ohta H.; Takagi A.; Kamiya T.; Hirano M.; Hosono H. Nature 2004, 432, 488.
    [15] Lu, Q.; Hua, X.; Wang, X.; Kluge, J. A.; Lu, S.; Cebe, P.; Kaplan, D. L. Acta Biomaterialia 2010, 6, 1380.
    [16] Hyde, A. J.; Wippler, C. J. Polymer Sci. 1962, 30, 1083.
    [17] X. Hua, D. L. Kaplan and P. Cebe, Macromolecules, 2006, 39, 6161-6170
    [18] I. C. Um, H.Y. Kweon, Y. H. Park and S. Hudson, Int. J. Biol. Macromol., 2001, 29, 91-97.
    [19] P. Harder, M. Grunze, R. Dahint, G. M. Whitesides and P. E. Laibinis, J. Phys.Chem. B, 1998, 102, 426-436.
    [20] K. Feldman, G. Hähner, N. D. Spencer, P. Harder and M. Grunze, J. Am. Chem. Soc., 1999, 121, 10134-10141.
    [21] X. Hu, D. L. Kaplan and P. Cebe, Macromolecules, 2006, 39, 6161-6170.
    [22] O. N. Tretinnikov and Y. Tamada, Langmuir, 2001, 17, 7406-7413.
    [23] D. Myers, Surfaces, Interfaces, and Colloids: Principles and Applications, 2nd edition; John Wiley & Sons: New York, 1999.
    [24] F. M. Fowkes, J. Phys. Chem., 1963, 67, 2538-2541.
    [25] X. Wang, H. J. Kim, P. Xu, A. Matsumoto and D. L. Kaplan, Langmuir, 2001, 17, 7406-7413.
    第六章

    [1] A. R. Murphy and D. L. Kaplan, J. Mater. Chem., pp. 6443-6450, Vol. 19, (2009)
    [2] C.H. Wang, C.-Y. Hsieh and J.-C. Hwang, Adv. Mater., pp. 1630-1634, Vol. 23, (2011)
    [3] Z. B. Cao, X. Chen, J. Yao, L. Huang and Z.Z. Shao, Soft Matter., pp. 910–915, Vol. 3, ( 2007)
    [4] Q. Lu., X. Hu, X. Wang , J. A. Kluge , S. Lu , P. Cebe , D. L. Kaplan Acta Biomaterialia, pp. 1380-1387, Vol. 6, (2010)
    [5] K. Yamada, Y. Tsuboi and A. Itaya Thin Solid Films, pp. 208-216, Vol. 440, (2003)
    [6] D. Wilson, R. Valluzzi, and David Kaplan Biophysical Journal, pp. 2690–2701, Vol. 78, (2000)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE