簡易檢索 / 詳目顯示

研究生: 涂清鎮
Tu, Ching-Chen
論文名稱: 運用於垂直微鏡面驅動之非對稱間隙旋轉梳狀致動器
Asymmetric-gap Rotary Comb-drive Actuators for the Application of Vertical-Micromirror Actuation
指導教授: 劉承賢
Liu, Cheng-Hsien
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 109
中文關鍵詞: 光學微機電微光切換器垂直微鏡面旋轉致動器靜電梳狀致動器非對稱間隙
外文關鍵詞: Optical MEMS, Optical Switch, Veritcal Micromirror, Rotary Actuator, Electrostatic Comb Drive, Asymmetric Gap
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 旋轉靜電梳狀致動器能夠以驅動單一垂直微鏡面來達到一對多通道的光切換功能。第一個旋轉梳狀致動器是田等人於1989所提出的,並且利用對稱間隙梳狀電極來產生靜電轉矩。對於光切換應用來說,微致動器的共振頻率是一個重要的動態特性規格。

    本研究提出利用非對稱間隙(Asymmetric Gap)以及楔形頂針(Wedge-shaped Bearing)的致動器設計在不犧牲旋轉角度之下加強旋轉致動器本身的共振頻率。相較於傳統對稱間隙旋轉梳狀致動器而言,非對稱間隙旋轉梳狀致動器在相同操作電壓下可以產生較大的靜電轉矩。在我們的設計中,雖然操作電壓超過了吸附電壓(Pull-in Voltage),但非對稱間隙旋轉致動器仍可以利用楔形頂針旋轉而不會發生吸附行為(Pull-in Behavior)。並且利用具有中央樑(Middle Beam)設計的繞曲彈簧(Serpentine Flexure)在加強共振頻率的同時改變旋轉致動器的共振頻率模態。從非對稱間隙旋轉梳狀致動器的量測結果得到當直流操作電壓在已超過吸附電壓達107V情形下致動器仍可旋轉並且旋轉角度可以達到5°,而在交流操作電壓77V頻率為共振頻1.54 KHz時旋轉角度可以達到±5°。我們也提出設計與製造方法將垂直微鏡面製作在對稱間隙與非對稱間隙梳狀致動器之上,並且在論文中針對垂直微鏡面驅動的結果加以說明與討論。


    Rotary electrostatic comb-drive actuator can achieve the 1 × N channels optical switching by actuating a single vertical micromirror. The first rotary comb-drive actuator presented by Tang et al. in 1989 uses the symmetric-gap comb fingers to generate the electrostatic torque. For the applications of optical switching, resonant frequency of the microactuators is an important specification of the dynamic response.

    This research proposes the actuator design which enhances the resonant frequency of the rotary actuator without scarifying the responding rotation angle via the asymmetric gap and the wedge-shaped bearing. Compared to classical symmetric-gap rotary comb-drive actuator, the asymmetric-gap rotary comb-drive actuator generates the larger electrostatic torque under the same actuating voltage. The asymmetric-gap rotary actuator can rotate itself without the pull-in behavior via the wedge-shaped bearing when the applied voltage is beyond the pull-in voltage in our design. The design of serpentine flexures with the middle beams is utilized in this study to support the restoring rotation of the asymmetric-gap rotary actuator, approach appropriate vibration modes as well as enhance the resonant frequency of desired rotational mode. A responding rotation angle of 5° at the DC applied voltage of 107 V beyond the pull-in voltage for a steady-state measurement and ±5° at the AC applied voltage of 77 V at the resonant frequency of 1.54 kHz were measured with our asymmetric-gap rotary actuators. We also propose the design and fabrication process to attach the vertical micromirror to our symmetric-gap and asymmetric-gap rotary comb-drive actuators. The vertical-micromirror actuations based on our symmetric-gap and asymmetric-gap rotary comb-drive actuators are demonstrated and characterized in this thesis.

    Abstract i 中文摘要 ii List of Figures v List of Tables xi 1. Introduction 1 1.1 What are Optical Networks? 1 1.2 The Key Components in Optical Networks 2 1.3 Optical Switching Architecture 7 1.3.1 3D Switching Architecture 7 1.3.2 2D Switching Architecture 8 1.3.3 1D Switching Architecture 8 1.4 1 × N Rotary Vertical-Micromirror Optical Switch 10 1.4.1 Rotary Electrostatic Microactuator 10 1.4.2 Vertical Micromirror 12 1.5 Motivation of the Thesis 17 2. Rotary Comb-drive Actuator 18 2.1 Symmetric-gap Rotary Comb-drive Actuator 18 2.2 Asymmetric-gap Rotary Comb-drive Actuator 34 2.2.1 Theoretical Analysis of Asymmetric-Gap Comb Finger 34 2.2.2 Design Principle of Asymmetric-gap Rotary Comb-drive Actuator 39 2.2.3 Analysis and Adjustment of Resonant Behavior 43 2.2.4 Static Rotation Response 47 2.2.5 Microfabrication Process 47 2.2.6 Measurement and Analysis 52 3. Fundamental Conception for Light 58 3.1 Gaussian Beam and Beam Propagation 58 3.2 Gradient Index (GRIN) Lens as Optical Collimators 60 3.3 ABCD Law for Gaussian Beam 62 3.4 Beam Clipping 64 3.5 Coupling Efficiency 65 4. 1 × N Rotary Switching Micromirror 67 4.1 Design Concept 67 4.2 Symmetric-gap Rotary Switching Micromirror 71 4.3 Asymmetric-gap Rotary Switching Micromirror 81 5. Conclusion 98 References 101 Publications 108

    [1] S. V. Kartalopoulos, DWDM: Networks, Devices, and Technology, IEEE, 2002.
    [2] T.-W. Yeow, K. L. E. Law, and A. Goldenberg, “MEMS Optical Switches,” IEEE Communications Magazine, pp.158-163, Nov., 2001.
    [3] P. B. Chu, S.-S. Lee, and S. Park, “MEMS: The Path to Large Optical Crossconnects,” IEEE Communications Magazine, pp.80-87, Mar., 2002.
    [4] S. Mechels, L. Muller, G. D. Morley, and D. Tillett, “1D MEMS-Based Wavelength Switching Subsystem,” IEEE Communications Magazine, pp. 88-94, Mar., 2003.
    3D Optical Switches
    [5] A. S. Dewa, J. W. Orcutt, M. Hudson, D. Krozier, A. Richards, and H. Laor, “Development of A Silicon Two-Axis Micromirror for An Optical Cross-Connect,” Solid-State Sensor and Actuator Workshop, Hilton Head Island, South Carolina, pp. 93-96, June 4-8, 2000.
    [6] V. A. Aksyuk, S. Arney, N. R. Basavanhally, D. J. Bishop, C. A. Bolle, C. C. Chang; R. Frahm, A. Gasparyan, J. V. Gates, R. George, C. R. Giles, J. Kim, P. R. Kolodner, T. M. Lee, D. T. Neilson, C. Nijander, C. J. Nuzman, M. Paczkowski, A. R. Papazian, R. Ryf, H. Shea, and M. E. Simon, “238×238 Surface Micromachined Optical Crossconnect With 2db Maximum Loss,” Optical Fiber Communication Conference, pp. FB9-1 - FB9-32002., 17-22 Mar ,2002.
    [7] T. Yamamoto, J. Yamaguchi, N. Takeuchi, A. Shimzu, E. Higurashi, R. Sawada, and Y. Uenishi, “A Three-Dimensional MEMS Optical Switching Module Having 100 Input and 100 Output Port,” IEEE Photonics Technology Letters, Vol. 15, No. 10, pp. 1360-1362, Oct., 2003
    [8] J.-H. Kim, H.-K. Lee, B.-I. Kim, J.-W. Jeon, J.-B. Yoon, and E. Yoon, “A High Fill-Factor Micro-mirror Stacked on a Crossbar Torsion Spring for Electrostatically-Actuated Two-Axis Operation in Large-Scale Optical Switch,” IEEE Int. MEMS Conf. Tech. Dig., Kyoto, Japan, pp. 259-262, 2003.
    [9] A. Baba, H. Okano, H. Uetsuka, and M. Esashi, “2 Axes Optical Switch With Holding Mechanism,” IEEE Int. MEMS Conf. Tech. Dig., Kyoto, Japan, pp. 251-254, 2003.
    [10] J. J. Bernstein, W. P. Taylor, J. D. Brazzle, C. J. Corcoran, G. Kirkos, J. E. Odhner, A. Pareek, M. Waelti, and M. Zai, “Electromagnetically Actuated Mirror Arrays for Use in 3-D Optical Switching Applications,” Journal of Microelectromechanical Systems, Vol. 13, No. 3, pp. 526-535, June 2004.
    2D Optical Switches
    [11] C. Marxer, C. Thio, M,-A. Gr□tillat, N. F. De Rooij, R. B□ttig, O. Anthamatten, B. Valk, and P. Vogel, “Vertical Mirrors Fabricated by Deep Reactive Ion Etching for Fiber-Optic Switching Applications,” Journal of Microelectromechanical Systems, Vol. 6, No. 3, pp. 277-285, June 1997.
    [12] S.-S. Lee, E. Motamedi, and M. C. Wu, “Surface-Micromachined Free-Space Fiber Optic Switches With Integrated Microactuators for Optical Fiber Communication Systems,” International Conference on Solid-State Sensors and Actuators, Transducers’97, pp. 1A4.07p, 1997.
    [13] S.-S. Lee, L.-S. Huang, C.-J. Kim, and M. C. Wu, “Free-Space Fiber-Optic Switches Based on MEMS Vertical Torsion Mirrors,” Journal of Lightwave Technology, Vol. 17, No. 1, pp. 7-13, Jan., 1999.
    [14] L. Y. Lin, E. L. Goldstein, and R. W. Tkach, “Free-Space Micromachined Optical Switches for Optical Networking,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 5, No. 1, pp. 4-9, Jan., 1999.
    [15] A. Q. Liu, X. M. Zhang, and Y. L. Lam, “A High Performance 4×4 Free-Space-Optic Crossconnections,” Optical MEMS 2000 IEEE/LOES International Conference, pp.37-38, 2000.
    [16] T. Kanie, M. Katayama, M. Shiozaki, T. Komiya, K. Saitoh, and M. Nishimura, “A Highly Dense MEMS Optical Switch Array Integrated With Planar Lightwave Circuit,” IEEE Int. MEMS Conf. Tech. Dig., pp. 560-563, 2000.
    [17] L. Dellmann, W. Noell, C. Marxer, K. Weible, M. Hoffmann, and N. F. De Rooij, “4×4 Matrix Switch Based on MEMS Switches and Integrated Waveguides,” International Conference on Solid-State Sensors and Actuators, Transducers’01 Eurosensors XV, pp. 4A3.04, 2001.
    [18] A. Q. Liu, X. M. Zhang, V. M. Murukeshan, Q. X. Zhang, Q. B. Zou, and S. Uppili, “An Optical Crossconnect (OXC) Using Drawbridge Micromirrors,” Sensors and Actuators, A, Vol. 97-98, pp.227-238, 2002.
    [19] T. W. Yeow, K. L. E. Law, and A. A. Goldenberg, “ SOI-Based 2-D MEMS L-Switching Matrix for Optical Networking,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 9, No. 2, pp. 603-613, March/April, 2003.
    [20] C.-H. Ji, Y. Yee, J. Choi, S.-H. Kim, and J.-U. Bu, “Electromagnetic 2×2 MEMS Optical Switch,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 10, No. 3, pp. 545-550, May/June, 2004.
    1D Optical Switches
    [21] A. A. Yasseen, J. N. Mitchell, J. F. Klemic, D. A. Smith, and M. Mehregany, “A Rotary Electrostatic Micromotor 1×8 Optical Switch,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 5, No. 1, pp. 26-32, Jan./Feb., 1999.
    [22] J. D. Grade, H. Jerman, and T. W. Kenny, “A Large-Deflection Electrostatic Actuator for Optical Switching Applications,” Solid-State Sensor and Actuator Workshop, Hilton Head Island, South Carolina, pp. 97-100, June 4-8, 2000.
    [23] J. D. Grade and H. Jerman, “MEMS Electrostatic Actuators for Optical Switching Applications,” Optical Fiber Communication Conference and Exhibit (OFC 2001), 3, pp. wx2-1-wx2-3, 2001.
    [24] K. Y. Yasumura, J. D. Grade, and H. Jerman, “Fluid Damping of an Electrostatic Actuator for Optical Switching Applications,” Solid-State Sensor and Actuator Workshop, Hilton Head Island, South Carolina, pp. 358-361, June 2-6, 2002.
    [25] Y.-C. Lin, J.-C. Chiou, W.-T. Lin, Y.-J. Lin, and S.-D. Wu, “The Design and Assembly of Surface-Micromachined Optical Switch for Optical Add/Drop Multiplexer Application,” IEEE Transactions on Advanced Packaging, Vol. 26, No. 3, pp. 261-267, 2003.
    [26] Z. F. Wang, W. Cao, X. C. Shan, J. F. Xu, S. P. Lim, W. Noell, N. F. de Rooij, “Development of 1×4 MEMS-Based Optical Switch,” Sensors and Actuators, A, Vol. 114, pp. 80-87, 2004.
    [27] J.-C. Tsai, S. Huang, D. Hah, H. Toshiyoshi, and M. C. Wu, “Open-Loop Operation of MEMS-Based 1×N Wavelengtj-Selective Switch With Long-Term Stability and Repeatability,” IEEE Photonics Technology Letters, Vol.16, No. 4, pp. 1041-1043, 2004.
    [28] M. Hu, H. Du, S. Ling, B. Liu, and G. Lau, “Fabrication of a Rotary Micromirror for Fiber-Optic Switching,” Microsystem Technologies, Vol. 11, pp.987-990, 2005.
    [29] H. Fujita, “Microactuators and Micromachines,” Proc. IEEE, Vol. 86, pp. 1721-1732, 1998.
    [30] E. Thielicke and E. Obermeier, “Microactuators and Their Technologies,” Mechatronics, Vol. 10, pp. 431-455, 2000.
    [31] D. J. Bell, T. J. Lu, N. A. Fleck, and S. M. Spearing, “MEMS Actuators and Sensors: Observations on Their Performance and Selection for Purpose,” J. Micromech. Microeng., Vol. 15, pp. S153-S164, 2005.
    [32] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface Micromachining for Microelectromechanical Systems,” Proc. IEEE, 86, pp. 1552-1574, 1998.
    [33] W. Tang, T. Nguyen, and R. Howe, “Laterally Driven Polysilicon Resonant Microstructures,” Sensors and Actuators, A, Vol. 20, pp. 25-32, 1989.
    [34] W. C.-K. Tang, “Electrostatic Comb Drive for Resonant Sensor and Actuator Applications”, PH. D. Thesis, EECS Department, University of California at Berkeley, November, 1990.
    [35] K. Ayano, M. Takahashi, K. Suzuki, and G. Hashiguchi, “A Concept of Soft-handing Tweezers Using Comb-drive Actuator,” Int. Conf. Microtechnologies in Medicine and Biology (MMB2006), pp. 264-266, 2006.
    [36] S. Kwon and L.P. Lee, “Stacked Two Dimensional Micro-lens Scanner for Micro Confocal Imaging Array,” MEMS2002, pp. 483-486, 2002.
    [37] K. Takahashi, H. N. Kwon, M. Mita, K. Saruta, J. H. Lee, H. Fujita, and H. Toshiyoshi, “A 3D Optical Crossconnect Using Microlens Scanner with Topologically Layer Switching Architecture,” IEEE/LEOS Int. Conf. on Optical MEMS and Their Applications, pp. ThA3, 2006.
    [38] J. D. Grade, H. Jerman, and T. W. Kenny, “Design of Large Deflection Electrostatic Actuators,” J. Microelectromech. Syst., Vol. 12, pp. 335-343, 2003.
    [39] J. D. Grade, K. Y. Yasumura, and H. Jerman, “A DRIE Comb-drive Actuator with Large, Stable Deflection Range for Use as an Optical Shutter,” International Solid State Sensors and Actuators Conference, pp. 568–571, 2003.
    [40] J. Li, Q. X. Zhang, and A. Q. Liu, “Advanced Fiber Optical Switches Using Deep RIE (DRIE) Fabrication,” Sensors and Actuators, A, Vol. 102, pp. 286–295, 2003.
    [41] Z. F. Wang, W. Cao, X. C. Shan, J. F. Xu, and S. P. Lim, “Development of 1×4 MEMS-based Optical Switch,” Sensors and Actuators, A, Vol. 114, pp. 80–87, 2004.
    [42] C. Lee, “Monolithic-integrated 8CH MEMS Variable Optical Attenuators,” Sensors and Actuators, A, Vol. 123-124, pp. 596–601, 2005.
    [43] H. N. Kwon, J.-H. Lee, K. Takahashi, and H. Toshiyoshi, “MicroXY Stages with Spider-leg Actuators for Two-dimensional Optical Scanning,” Sensors and Actuators, A, Vol. 130-131, pp. 468–477, 2006.
    [44] J. A. Yeh, S.-S. Jiang, and C. Lee, “MOEMS Variable Optical Attenuators Using Rotary Comb Drive Actuators,” IEEE Photonics Technology Letters, Vol. 18, pp. 1170-1172, 2006.
    [45] J. D. Grade, K. Y. Yasumura, and H. Jerman, “Advanced, Vibration-resistant, Comb-drive Actuators for Use in A Tunable Laser Source,” Sensors and Actuators, A, Vol. 114, pp. 413–422, 2004.
    [46] M. Hu, H. Du, S. Ling, B. Liu, and G. Lau, “Fabrication of A Rotary Micromirror for Fiber-optic Switching,” Microsyst. Technol., Vol. 11, pp. 987-990, 2005.
    [47] J. D. Berger, Y. Zhang, J. D. Grade, H. Lee, S. Hrinya, H. Jerman, Al Fennema, A. Tselikov, and D. Anthon, “Widely Tunable External Cavity Diode Laser Using a MEMS Electrostatic Rotary Actuator,” Proceedings of the Technical Digest LEOS Summer Topic Meeteeing, pp. 41-42, 2001.
    [48] J. A. Yeh, C. N. Chen, and Y. S. Lui, “Large Rotation Actuated by In-plane Rotary Comb-drives with Serpentine Spring Suspension,” J. Micromech. Microeng., Vol. 15, pp. 201-206, 2005.
    [49] S. J. Kim, Y. H. Cho, H. J. Nam, and J. U. Bu, “Piezoelectrically Pushed Rotational Micromirrors for Wide-angle Optical Switch Applications,” MEMS2003, pp. 263-266, 2003.
    [50] C. H. Chi, J. Yao, J. C. Tsai, M. C. Wu, and K. Okamoto, “Compact 1x8 MEMS Optical Switches Using Planar Lightwave Circuits,” OFC Conference, Vol. 2, pp. 265-267, 2004.
    [51] R. A. Conant, J. T. Nee, K. Y. Lau, and R. S. Muller, “Dynamic Deformation of Scanning Mirrors. Optical MEMS,” IEEE/LEOS International Conference on, pp. 49-50, 2000.
    [52] L. Y. Lin, S. S. Lee, K. S. J. Pister, and M. C. Wu, “Micro-machined Three-dimensional Micro-optics for Integrated Free-space Optical System,” IEEE Photon. Technol. Lett., Vol. 6, No. 12, pp. 1445-1447, 1994.
    [53] Patrick C.-P. Cheung, “Desigh, Fabrication, Position Sensing, and Control of Electrostatic, Surface-Micromachined Polysilicon Microactuators,” PH. D. Thesis, ME Department, University of California at Berkeley, May, 1995.
    [54] Stephen D. Senturia, Microsystem Design, Kluwer Academic Publishers, London,.2000.
    [55] J. M. Gere, Mechanics of Materials, 5th edn. Brooks/Cole, Pacific Grove, pp. 656-673, 2001.
    [56] G. K. Fedder, Simulation of Microelectromechanical Systems, Ph. D. Thesis, University of California, Berkeley, 1994.
    [57] Y. Fukuta, H. Fujita, and H. Toshiyoshi, “Vapor Hydrofluoric Acid Sacrificial Release Technique for Micro Electro Mechanical Systems Using Labware,” Jpn. J. Appl. Phys., Vol. 42, pp. 3690-3694, 2003.
    [58] B. Saleh and M Teich, Foundametals of Photonics, Wiley, 1991.
    [59] H. Y. Wang, R. S. Foote, S. C. Jacobson, J. H. Schneibel, and J. M. Ramsey, “Low Temperature Bonding for Microfabrication of Chemical Analysis Devices,” Sensors and Actuators, B, Vol. 45, pp. 199-207, 1997.
    [60] D. Goustouridis, K. Minoglou, S. Kolliopoulou, S. Chatzandroulis, P. Morfouli, P. Normand, and D. Tsoukalas, “Low Temperature Wafer Bonding for Thin Silicon Film Transfer,” Sensors and Actuators, A, Vol. 110, pp. 401-406, 2004.
    [61] Honeywell Spin-On Glass product literatures, Honeywell International Inc (http:// www.honeywell.com)
    [62] M. Elwenspoek and H. V. Jansen, Silicon Micromachining, Cambridge University, 1998.
    [63] W.-H. Chang and Y.-C. Huang, “A New Pre-etching Pattern to Determine <110> Crystallographic Orientation on Both (100) and (110) Silicon Wafers,” Microsyst. Technol., Vol. 11, No. 2-3, pp. 117-128, 2005.
    [64] J. Chen, L. Liu, Z. Li, Z. Tan, Q. Jiang, H. Fang, Y. Xu, and Y. Liu, “Study of Anisotropic Etching of (100) Si with Ultrasonic Agitation,” Sensors and Actuators, A, Vol. 96, pp. 152-156, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE