簡易檢索 / 詳目顯示

研究生: 洪國鈞
Kuo-Chen Hung
論文名稱: 一般建材天然放射性核種濃度測定
The Measurement of Concentrations of Natural Radioactive Nuclides in Common Building Materials
指導教授: 江祥輝
S.H.Jiang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 129
中文關鍵詞: 建材天然放射性半經驗法純鍺偵撿器混凝土水泥紅磚玻璃
外文關鍵詞: building materials, natural radioactivity, Semi-empirical, HPGe detector, concrete, cement, brick, glass
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文採取半經驗法研究台灣一般建材的天然放射性核種活度。半經驗法是以模擬搭配測量來完成實驗數據的取得。電腦模擬可以取代傳統量測,定出延展性射源的偵檢效率,而且準確度並不亞於傳統測量方法。故本研究採用半經驗法,搭配實驗與模擬量測建材的放射性核種濃度。量測用的偵檢器選用高解析度的高純鍺(HPGe)。模擬用的計算工具使用以Monte Carlo為基礎所開發的電腦程式。

    本研究測量的範圍包括混凝土、水泥、玻璃、紅磚、木板等建材。混凝土、水泥、玻璃圍幕為國內新式建築物的主體及裝飾建材;紅磚與木材為較早期建築物的主體及裝飾建材。國內對於以上所述建材的天然放射性至今尚無完整調查研究。究其原因,應是一般建材材質形狀差異大、樣品處理、偵測效率測定過於耗時費事之故。本論文的目的是希望克服上述困難,從事國內一般建材的天然放射性核種濃度測量研究,給予相關管制單位及一般民眾評估參考。


    Abstract
    This thesis investigates natural radioactivity of building materials in Taiwan with semi-empirical approach. Semi-empirical approach refers to detector measurement integrated with computer simulation. As computer simulation defines the detective efficiency of extensive sources no less accurate than detector measurement, this research uses computer simulation in combination with detector measurement to investigate natural radioactivity of building materials. For computer simulation, programs are developed based on Monte Carlo method. For detector, HPGe is chosen for its high resolution.

    Building materials sampled in this research include concrete, cement, glass, bricks and woods. Concrete, cement, and glass make up columns and walls in modern Taiwanese buildings, while bricks and woods consist of early Taiwanese houses. Few researches have been done on the radiation of these materials, due to their great variations in properties and sizes, which make it almost impossible to sample and test. The purpose of this thesis, despite the difficulties mentioned above, is to study the radioactivity of these common building materials, providing statistics for regulation institution and general public.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VII 圖目錄 X 第一章 緒論 1 1.1 前言 1 1.2 動機 1 第二章 文獻回顧 5 第三章 天然放射性核種 12 3.1天然放射性 12 3.2 衰變鏈 15 第四章 高純鍺偵檢器全能峰效率 19 4.1 前言 19 4.2 高純鍺偵檢器結構 20 4.2.1 基本原理 20 4.2.2 基本構造 21 4.2.3 無感層 21 4.3 有效立體角定義 22 4.4 有效立體角計算機程式之發展 22 第五章 實驗程序 24 5.1 實驗儀器 24 5.1.1 實驗設備 24 5.1.2 高純鍺偵檢器 24 5.1.3 DSPEC 26 5.1.4 DSPEC在Windows 95上的網路通訊協定 27 5.1.5 分析控制軟體GammaVisionTM 30 5.2 實驗設備 30 5.3 真耦合效應 31第六章 樣品概說與製備 32 6.1 前言 32 6.2 水泥 32 6.2.1 水泥概說 32 6.2.2 水泥樣品製備 34 6.3 混凝土 36 6.3.1 混凝土概說 36 6.3.2 混凝土樣品製備 36 6.4 紅磚 38 6.4.1 紅磚概說 38 6.4.2 紅磚樣品製備 38 6.5 玻璃 40 6.5.1 玻璃概說 40 6.5.2 玻璃樣品製備 40 6.4 木材 43 6.4.1 木材概說 43 6.4.2 木材樣品製備 43 第七章 實驗結果與討論 45 7.1 前言 45 7.2 點射源測試 45 7.3 建材試樣能譜與最小可測活度 49 7.3.1 建材試樣能譜 49 7.3.2 最小可測活度(Minimum Detectable Activity) 90 7.4 建材有效立體角與偵檢效率 92 7.4.1 建材有效立體角 92 7.4.2 偵檢效率 101 7.5 建材試樣天然放射性核種濃度 102 第八章 結論與建議 111 8.1 結論 111 8.2 建議 113 參考文獻 115 附錄A GEM-30185P 內部結構 119 附錄B 磁磚 121 B.1 磁磚 121 B.1.1 磁磚概說 121 B.1.2 磁磚樣品製備 122 B.2 磁磚有效立體角與偵檢效率 123 B.2.1 磁磚有效立體角 123 B.2.2 磁磚偵檢效率 124 B.3 磁磚試樣天然放射性核種濃度 125 B.3.1 磁磚試樣比活度推導 125 B.3.2 磁磚試樣能譜測量結果 126 B.3.3 磁磚試樣天然放射性核種濃度 129 B.4 討論 129

    中文參考文獻
    [A1] 翁寶山,輻射防護史,財團法人中華民國輻射防護協會,1999
    [A2] 翁寶山,建築物活度限值的介紹,天然放射性物質及低劑量輻射效應研習會,
    財團法人中華民國輻射防護協會,1996
    [A3] 陳清江,台灣建築物室內氡活度之評估,博士論文,國立清華大學原子科學研究所,1992
    [A4] 林友明、黃景鐘、林培火、陳清江,台灣地區地表加馬輻射劑量率之調查,
    核子科學第23卷第一期,1986
    [A5] 林時聖,環境試樣與建材之放射性核種分析,碩士論文,清華大學原子科學研究所,1994
    [A6] 盧仲信,建材天然放射性核種濃度測量與劑量評估,碩士論文,
    國立清華大學工程與系統科學研究所,1999
    [A7] 劉祺章,磁磚中天燃放射核種造成室內空間劑量之評估報告,輻射偵測中心,1999
    [A8] 日本Isotope協會手冊,1999
    [A9] 江明峰,輻射偵檢器內部構造非破壞性檢測,碩士論文,
    國立清華大學工程與系統科學系碩士班,1999
    [A10] 康力仁,純鍺偵檢器絕對效率之建立,碩士論文,國立清華大學核子工程研究所,1991
    [A11] 龔人俠,水泥化學概論,台灣區水泥工業同業工會,1970
    [A12] 李明君,混凝土配比標準資料庫之建立,內政部營建署,1998
    [A13] 台灣水泥公司產品手冊,台灣水泥公司,1980
    [A14] 林炳炎,飛灰、矽灰、高溫爐石用在混凝土中,三民書局,1993
    [A15] 程道腴、鄭武輝,玻璃學,徐氏基金會,1985
    [A16] 吳成偉,磚窯故鄉,彰化縣立文化中心,1999
    [A17] 丁昭義,木材化學,pp.37-39,國立編譯館,1983
    [A18] 王松永,木材物理學,國立編譯館,1986
    [A19] 普通地質學,中國石油股份有限公司研究及訓練中心教材,1977
    [A20] 何春蓀,普通地質學,國立編譯館,1981
    [A21] 張仲民,普通土壤學,國立編譯館,1988
    [A22] 程道腴,陶瓷釉藥學,徐氏基金會,1989
    西文參考文獻
    [B1] C. J. Chen and Y. M. Lin, Study of the Natural Radioactivity Standards for Stones as
    Building Material, Environmental International, pp.221-226,1996.
    [B2] L. Koblinger, Calculation of Exposure Rates from Gamma Sources in Wall of Dwelling
    Rooms, Health Physics 34, pp.459-463, 1978.
    [B3] V. I. Karpov and E.M. Krisiuk, Estimation of Indoor Gamma Dose Rate, Health Physics
    39, pp.819-921, 1980.
    [B4] E. M. Krisiuk and V. I. Karpov, Cost-benefit Analysis Applied to Building Materials with
    Comparatively High Natural Radionuclide Concentration, Health Physics 39,
    pp.578-580, 1980.
    [B5] United Nations Scientific Committee on the Effects of Atomic Radiation(1988)Ionizing
    Radiation:Sources and biological effects, Report to the General Assembly, with annexes.
    New York:United Nations;1982, 1988, 1993.
    [B6] L. Moens, J. De Donder, X. L .Lin, J.De Corte, A. De Wispelaere, A. Simonits, and J.
    Hoste, Calculation of the Absolute Peak Efficiency of Gamma-Ray Detectors for
    Different Counting Geometries, Nucl. Instr. And Meth.187, pp.451, 1981.
    [B7] Chi-Chang Liu, Tieh-Chi Chu, Ching-Jiang Chen, and Chao-Ming Tsai, Modeling of
    Dose Assessment for Natural Radioactive Nuclides In Decorating Building Material, The
    1999 Symposium On Environmental Radiation Monitoring Technology, Radiation
    Monitoring Center, Atomic Energy Council, 1999.
    [B8] L. Zikovsky and G. Kennedy, Radioactivity of Building Materials Available in Canada,
    Health Physics 63, pp.449-452, 1992.
    [B9] L. Zikovsky and B. Chah, A Computer Program for Calculating Ge(Li) Detector
    Counting Efficiencies with Large Volume Sample, Nucl. Instr. And Meth. A263,
    pp.483-486, 1988.
    [B10] Glenn F. Knoll, Radiation Detector and Measurement, Wiley, second edition.
    [B11] N.Mihajevic, J.De Corte, B.Smodis, R.Jacimovic, G.Medin, A.De Wispelaere, P.Vukotic,
    and P.Stegnar, J.Radioanal. Nucl. Chem. 169, P.209, 1993.
    [B12] T.K.Wang, M.Y.Mar, T.H.Ying, C.H.Liao, and C.L.Tseng, HPGe Detector Absolute-
    peak-efficiency Calibration by Using the ESLOAN Program, Appl. Rad. Isot. 46,
    P.933-944, 1995.
    [B13] T.K.Wang, W.Y.Mar, T.H.Ying, C.L.Tseng, C.H.Liao, and M.Y.Wang, HPGe Detector
    Efficiency Calibration for Extended Cylinder and Marinelli-Beaker Sources Using the
    ESOLAN Program, Appl. Rad. Isot. 48, P.83, 1997.
    [B14] S.H. Jiang, J.H. Liang, J.T. Chou, U.T. Lin, W.W. Yeh, A Hybrid Method for
    Calculating Absolute Peak Efficiency of Germanium Detectors, Nuclear Instruments &
    Methods In Physics Research A 413 P.281-292, 1998.
    [B15] W. R. Nelson, H. Hirayama, and D. W. O. Rogers, EGS4 Code System, Slac-256, 1985.
    [B16] EG&G ORTEC GEM-30185P High-Purity Germanium Coaxial Detector System
    Quality Assurance Data Sheet, 1995.
    [B17] EG&G ORTEC DSPECTM Digital Gamma-Ray Spectrometer Manual, 1995.
    [B18] EG&G ORTEC GammaVisionTM Gamma-ray Spectrum Analysis and MCA Emulation
    A66-BI Software User’s Manual, 1993.
    [B19] EG&G ORTEC Connections and Networks Notes, 1996.
    [B20] L. Moens and J.Hoste, Calculation of the Peak Efficiency of High-Purity Germanium
    Detectors, International Journal of Applied Radiation and Isotopes 34:8 P.1085-1095,
    Pergamon Press Ltd., 1983.
    [B21] E. M. Krisiuk, S. T. Tarasov, V. P. Shamov, A study on radioactivity of building
    materials. Leningrad: Leningrad Research Institute for Hygiene;1971.
    [B22] OECD/NEA (Nuclear Energy Agency, Organization for Economic Co-operation
    and Development). Exposure to radiation from the natural radioactivity in building
    materials. Report by an NEA Group experts. Paris:OECD/NEA ; 1971.
    [B23] K. Mamont-Ceisla, B. Gwiazdowski, M. Biernacka, A. Zak, Radioactivity of
    building materials in Poland In: Proceeding 2nd special symposium on natural
    radiation environment. Bombly, India, 19-23 Jan. 1981, New Delhi, Wiley
    Eastern Limited, 1981
    [B24] B. Lindell, A radon control programme in theory and practice. Radiat. Prot.
    Dosim.7:417-425, 1984.
    [B25] DIH (Department of Industrial Hygiene), Radiological health protection
    standards for building material, GB6566-86. Beijing: Department of Industrial
    Hygiene, 1986.
    [B26] F. Steger, B. Knusch, I. Buchner, NORM S-5200: radioactivity in building
    materials. Radiat. Protect. Dosim. 45:721-722, 1922.
    [B27] John G. Ingersoll, A Survey of Radionuclide Contents and Radon Emanation
    Rates in Building Materials Used in the U.S.. Health Physics Vol.45 No.2
    pp.363-368, 1983.
    [B28] G. Sciocchetti, G. F. Clemente, G. Ingrao, F. Scacco, Results of a Survey on
    Radioactivity of Building Materials in Italy. Health Physics Vol.45 No.2
    pp.385-388, 1983.
    [B29] E. Storm, H. I. Israel, “Nucl. Data Tables,” A7565, 1970.
    [B30] H. Hirayama, Y. Namito, “Lecture Notes of EGS4 Course at KEK,” High
    Energy Accelerator Research Organization, Japan, 2000.
    [B31] B. Kahn, G. G. Eilchholz, F. J. Clarke, ”Search for Building Materials as
    Sources of elevated radiation dose,” Health Phys. 45:349-361;1983
    [B32] J.Magill, “Nuclides 2000 – An Electronic Chart of Nuclides”, Institute for
    Transuranium Elements, European Commission, 2000

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE