簡易檢索 / 詳目顯示

研究生: 蔡佳伶
Tsai, Chia-Ling.
論文名稱: 一個新型的波頌-波茲曼方程:具有小的德拜長度的解的漸進行為
A new Poisson-Boltzmann equation:asymptotics of solutions with small Debye length
指導教授: 李俊璋
Lee, Chiun-Chang
口試委員: 陳啟銘
Chen, Chi-Ming
劉育佑
Liu, Yu-Yu
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 22
中文關鍵詞: 泊頌--波茲曼漸進行為笛利克萊邊界條件邊界層小的德拜長度總體積百分數
外文關鍵詞: Poisson--Boltzmann, asympotic behavior, Dirichlet boundary condition, boundary layer, small Debye length, bulk volume fraction
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電雙層是電解質溶液中在帶電表面所形成的一種結構。在此研究中,我們考慮笛利克萊邊界條件,來研究有界物理域中MPB方程的二階近似,並分析它的解在德拜長度趨近於零的時候的漸進行為。我們發現在當解很靠近邊界(對應於帶電表面)的時候會形成邊界層(對應於電雙層)。其中總體積百分數$\nu \in (0,1)$在此現象中扮演很重要的角色。因為當$\nu$很小很靠近零時和$\nu$很靠近1時有不一樣的漸進行為。


    In the electrolyte solutions, the electrical double layer (EDL) is formed near the charged surface. In this thesis, we revisit the modified Poisson--Boltzmann (MPB) equation over a bounded physical domain to analyze the asympotic behavior of electrostatic potential $
    hi$ in the limit of zero Debye length. More precisely, under the Dirichlet boundary condition, we study the quadratic approximation of the equation of $
    hi$ around $
    hi=0$. As the small parameter $\epsilon$ (related to the Debye screening length) tends to zero, the solution (electrostatic potential) develops boundary layers (corresponding to EDL) near the boundary (corresponding to charge surface). In particular, the bulk volume fraction $\nu \in (0,1)$ plays a key role in the phenomenon. Because asympotic behaviors for $0<\nu<\frac{1}{3}$ and $\frac{1}{3} \leq \nu < 1$ are totally different. Under the dilute case $0<\nu<\frac{1}{3}$, we show that $
    hi$ will approch to $0$ in the interior interval. On the other hand, under the high concentration case $\frac{1}{3} \leq \nu < 1$, we obtain a general solution which has different behavior from that in the case $0<\nu<\frac{1}{3}$.

    Contents 摘要. . . . . . . . . .i Abstract . . . . . . . . . .ii Acknowledgement . . . . . . . . . .iii 1 Introduction. . . . . . . . . . 1 1.1 Background and the model . . . . . . . .. . . 1 2 Main results . . . . . . . . . .4 3 Proof of Theorem 2.1 . . . . . . . . . .5 3.1 a  b  0 and (a; b) ̸= (0; 0) . . . . . . . . . . . . 8 3.2 a > 0 > b. . . . . . . . . . . . . . . . . . . 9 4 Proof of Theorem 2.2 . . . . . . . . . . . .13 5 Proof of Proposition 2.3 and Proposition 2.4 . . . . . . . . 13 5.1 Proof of Proposition 2.3 . . . . . . . . . . . . . . . 14 5.2 Proof of Proposition 2.4 . . . . . . . . . . . . . . 14 5.2.1 k = Cb . . . . . . . . .. . . . . . . . . . 16 5.2.2 k ̸= Cb . . . . . . . . . . . . . . . . . . . . . . 18 6 Appendix . . . . . . . . . . . . . .19

    [1] I. Borukhov, D. Andelman, and H. Orland, Steric effects in electrolytes: A modified poisson-boltzmann equation, Phys. Rev. Lett., 79 (1997), pp. 435–438.
    [2] I. Borukhov, D. Andelman, and H. Orland, Adsorption of large ions from an electrolyte solution: a modified poisson–boltzmann equation, Electrochimica Acta, 46 (2000), pp. 221 – 229.
    [3] S. J. de Carvalho, R. Metzler, and A. G. Cherstvy, Critical adsorption of polyelectrolytes onto planar and convex highly charged surfaces: the nonlinear poisson–boltzmann approach, New Journal of Physics, 18 (2016), p. 083037.
    [4] C.-C. Lee, Asymptotic analysis of charge conserving poisson-boltzmann equations with variable dielectric coefficients, 36 (2015), pp. 3251–3276.
    [5] C.-C. Lee, Effects of the bulk volume fraction on solutions of modified poisson–boltzmann equations, Journal of Mathematical Analysis and Applications, 437 (2016),pp. 1101 – 1129.
    [6] C.-C. Lee, H. Lee, Y. Hyon, T.-C. Lin, and C. Liu, Boundary layer solutions of charge conserving poisson-boltzmann equations: One-dimensional case, 14 (2015).
    [7] E.-m. c. Lee, Chiun-Chang, The charge conserving poisson-boltzmann equations: Existence, uniqueness, and maximum principle, Journal of Mathematical Physics,55 (2014).
    [8] W. Rocchia, Poisson-boltzmann equation boundary conditions for biological applications,41 (2005), pp. 1109 – 1118.

    QR CODE