研究生: |
劉育鑫 Liu, Yu-Sin |
---|---|
論文名稱: |
偵測氣泡瑕疵之適應性分割技術 Adaptive segmentation technologies for void-shape defect detection |
指導教授: |
彭明輝
Perng, Ming-Hwei |
口試委員: |
蔡宏營
陳世亮 彭明輝 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 影像分割 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技發展,現代元件封裝技術也隨之進步,表面黏著元件也就應運而生。在QFN封裝上,散熱片的目的是為了達到有效地將熱與電器特性從元件轉移到PCB 的金屬層上,所以兩者的密合度非常重要。然而在製程上,常會因為錫膏面積而造成孔洞(Void),影響傳導特性,故需做X光檢測來判斷孔洞面積大小。
然而孔洞缺陷並沒有一定的位置和形狀,且因錫膏厚度分佈不均勻,造成背景影像的亮度和空洞缺陷的亮度值差異很小,導致檢測的困難。既有的影像分割方法皆不適用於導熱片上的檢測,故發展出適應性分割技術來分離影像上的孔洞缺陷。本方法屬於混合型的分割技術,在文中會詳細介紹,最後將分析本方法的優缺點以及實驗結果討論,並將此方法套用在其他元件的檢測上。
[1]立錡科技,“Footprint Design and Surface Mount Application for QFN/DFN Package.”
[2]陳洊丞,“電腦斷層影像與表面封裝元件之校正與缺陷檢測,” 碩士論文, 國立清華大學動力機械工程學系, 2010.
[3]R. C. Gonzalez and R. E. Woods, Digital Image Processing, third ed. Englewood Cliffs, NJ: Prentice Hall, 2008.
[4]M. A. Balafar, A. Ramli, M. I. Saripan, and S. Mashohor,“Review of brain MRI image segmentation methods,” Artificial Intelligence Review, vol. 33, pp. 261-274, 2010.
[5]K. Haris, S. N. Efstratiadis, N. Maglaveras, and A. K. Katsaggelos,“Hybrid image segmentation using watersheds and fast region merging,” Image Processing, IEEE Transactions on, vol. 7, pp. 1684-1699, 1998.
[6]N. R. Pal and S. K. Pal,“A review on image segmentation techniques,” Pattern recognition, vol. 26, pp. 1277-1294, 1993.
[7]R. M. Haralick and L. G. Shapiro,“Image segmentation techniques,” Computer vision, graphics, and image processing, vol. 29, pp. 100-132, 1985.
[8]J. Canny,“A computational approach to edge detection,” Readings in computer vision: issues, problems, principles, and paradigms, vol. 184, p. 86, 1987.
[9]R. Adams and L. Bischof,“Seeded region growing,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 16, pp. 641-647, 1994.
[10]H. Samet,“The quadtree and related hierarchical data structures,” ACM Computing Surveys (CSUR), vol. 16, pp. 187-260, 1984.
[11]S. L. Horowitz and T. Pavlidis,“Picture segmentation by a tree traversal algorithm,” Journal of the ACM (JACM), vol. 23, pp. 368-388, 1976.
[12]T. Pavlidis and Y. T. Liow,“Integrating region growing and edge detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 225-233, 1990.
[13]S. Beucher and C. Lantuejoul,“Use of watersheds in contour detection,” 1979, pp. 17-21.
[14]S. Beucher and F. Meyer,“The morphological approach to segmentation: the watershed transformation,” OPTICAL ENGINEERING-NEW YORK-MARCEL DEKKER INCORPORATED-, vol. 34, pp. 433-433, 1992.
[15]L. J. Belaid and W. Mourou,“Image segmentation: a watershed transformation algorithm,” Image Anal Stereol, vol. 28, pp. 93-102, 2009.
[16]N. Otsu,“A threshold selection method from gray-level histograms,” Automatica, vol. 11, pp. 285-296, 1975.
[17]J. MacQueen, “Some methods for classification and analysis of multivariate observations,” 1967, p. 14.
[18]林雍勛,“X射線層析攝影合成法之PCB板缺陷檢測,” 碩士論文, 國立清華大學動力機械工程學系, 2008.
[19]A. McAndrew, Introduction to Digital Image Processing with MATLAB, second ed. Thomson, 2004.
[20]張智星, MATLAB程式設計與應用: 清蔚科技, 2003.