研究生: |
汪永雯 Wang, Yong Wen |
---|---|
論文名稱: |
以熱脫附儀氣相層析質譜儀聯用系統分析慢性阻塞性肺病與支氣管性氣喘病人所呼出的氣體 Analyzing Chronic Obstructive Pulmonary Disease (COPD) and Bronchial Asthma (BA) Patients’ Breath with TD-GC-MS System |
指導教授: |
饒達仁
Yao, Da Jeng |
口試委員: |
鄭桂忠
Tang, Kea Tiong 曾繁根 Tseng, Fang Gang |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 呼氣檢測 、氣象層析儀串聯質譜儀 、慢性肺阻塞 、支氣管性氣喘 |
外文關鍵詞: | xhaled breath measurement, GC/MS, COPD, BA |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人體呼出氣體的檢測,是日趨重要的非侵入性健康狀態檢測的方式。慢性肺阻塞(COPD)與支氣管性氣喘(BA),在許多方面十分相像,但治療方式大有不同,導致在臨床上很難快速診斷,並進行治療。本研究利用熱脫附儀氣相層析質譜儀(TD-GC-MS)聯用系統,針對COPD病患、BA病患、與未患病的常人呼出氣體樣品進行分析,證明透過TD-GC-MS系統可以成功分析樣品中化合物, 並且以此區別COPD病患、BA病患以及非病患的差異。
在本研究中,先利用每次檢驗都會出現、因吸附材料裂解而產生的六甲基環三矽氧烷 (Cyclotrisiloxane, hexamethyl-)作為內標,計算各檢驗到的化合物,相對於六甲基環三矽氧烷的相對濃度。接者,先簡單的比較化合物出現機率,確定可以用檢測到的化合物對研究對象分群。再用決策樹法細分,透過特定的化合物鑑定順序判定待測者的狀態,為常人、COPD 病患或是BA 病患。最後,以交叉比對的方式,證實此研究方式並非只適用於特定群體。
在本研究中,以耗時極短的分析方式,僅以總共50個呼氣樣品即可達到常人、COPD 病患與BA 病患分別為高達100%、94%與70%的平均分辨正確率。
Human exhaled breath measurement is one of important non-invasive health monitoring methods. The symptoms of bronchial asthma (BA) and chronic obstructive pulmonary disease (COPD) are similar, but different treatments for these two diseases. In this research, thermal desorption (TD) tendon with gas chromatography–mass spectrometry (GC-MS) system has been used to develop a screen method for the COPD patients, BA patients, and normal people.
In this research, “Cyclotrisiloxane, hexamethyl-“has been used as an internal standard for the evaluation of the relative concentration for all the detected volatile organic compounds (VOCs). First, we compare the relative concentration of VOCs from empty airbags and from the samples that were exhaled from COPD, BA patients, and normal people. Then, decision tree with deliberately ordered VOCs is used to identify the situation of every object. Cross validation is used to verify the data between the certain groups of samples. The breath from these three kinds of people could be simply distinguished and the average classification accuracy of normal people, COPD patients and BA patients are 100%, 94% and 70% respectively.
第六章 參考文獻
1. 劉振盛. 慢性阻塞性肺疾病診斷與治療進展. 2011/05/20; Available from: http://www.postal.com.tw/%E7%B6%B2%E7%AB%99%E8%A1%9B%E6%95%99%E5%96%AE%E5%BC%B5/%E8%83%B8%E8%85%94%E5%85%A7%E7%A7%91/%E6%85%A2%E6%80%A7%E9%98%BB%E5%A1%9E%E6%80%A7%E8%82%BA%E7%96%BE%E7%97%85.htm.
2. WHO. Chronic obstructive pulmonary disease (COPD). Global surveillance, prevention and control of chronic respiratory diseases - A comprehensive approach 2007; Available from: http://www.who.int/respiratory/copd/en/.
3. National Heart, L., and Blood Institute. What Is COPD? 2013/7/31; Available from: http://www.nhlbi.nih.gov/health/health-topics/topics/copd.
4. Bateman, E.D., et al., Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J, 2008. 31(1): p. 143-78.
5. 蔡熒煌, et al., 慢性阻塞性肺病(慢阻肺)2012診治指引. 2012.
6. (GINA), G.I.f.A. Global strategy for asthma management and prevention. 2016.
7. Blake, R.S., P.S. Monks, and A.M. Ellis, Proton-Transfer Reaction Mass Spectrometry. Chemical Reviews, 2009. 109(3): p. 861-896.
8. Lindinger, W., A. Hansel, and A. Jordan, On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. International Journal of Mass Spectrometry and Ion Processes, 1998. 173(3): p. 191-241.
9. Cai, J., et al., Comparative analysis of clary sage (S. sclarea L.) oil volatiles by GC–FTIR and GC–MS. Food Chemistry, 2006. 99(2): p. 401-407.
10. Christian, T.J., Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels. Journal of Geophysical Research, 2003. 108(D23).
11. Singh, P., et al., Fourier Transform Infrared (FT-IR) Spectroscopy in An-Overview. Research Journal of Medicinal Plants, 2011. 5(2): p. 127-135.
12. Inc., T.F.S., Introduction to Fourier Transform Infrared Spectrometry. n.d.
13. Cassidy, D.T. and J. Reid, Atmospheric pressure monitoring of trace gases using tunable diode lasers. Applied Optics, 1982. 21(7): p. 1185-1190.
14. Trapp, D., et al., Isoprene and its degradation products methyl vinyl ketone, methacrolein and formaldehyde in a eucalyptus forest during the FIELDVOC'94 campaign in Portugal. Chemosphere - Global Change Science, 2001. 3(3): p. 295-307.
15. Linnerud, I., P. Kaspersen, and T. Jaeger, Gas monitoring in the process industry using diode laser spectroscopy. Applied Physics B: Lasers and Optics, 1998. 67(3): p. 297-305.
16. de Blas, M., et al., Automatic on-line monitoring of atmospheric volatile organic compounds: gas chromatography-mass spectrometry and gas chromatography-flame ionization detection as complementary systems. Sci Total Environ, 2011. 409(24): p. 5459-69.
17. Tian, J., et al., Phenotype differentiation of three E. coli strains by GC-FID and GC-MS based metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci, 2008. 871(2): p. 220-6.
18. Scott, R.P.W. Chiral-GC - The Flame Ionization Detector (FID) from Chiral Gas Chromatography. n.d.; Available from: http://www.chromatography-online.org/Chrial-GC/The-Flame-Ionization-Detector-FID.php.
19. Krone, N., et al., Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS). J Steroid Biochem Mol Biol, 2010. 121(3-5): p. 496-504.
20. Peralbo-Molina, A., et al., Development of a method for metabolomic analysis of human exhaled breath condensate by gas chromatography-mass spectrometry in high resolution mode. Anal Chim Acta, 2015. 887: p. 118-26.
21. Hussain, S.Z. and K. Maqbool, GC-MS: Principle, Technique and its application in Food Science.
22. Cao, W. and Y. Duan, Breath analysis: potential for clinical diagnosis and exposure assessment. Clin Chem, 2006. 52(5): p. 800-11.
23. Kim, K.H., S.A. Jahan, and E. Kabir, A review of breath analysis for diagnosis of human health. TrAC Trends in Analytical Chemistry, 2012. 33: p. 1-8.
24. Mutlu, G.M., et al., Collection and Analysis of Exhaled Breath Condensate in Humans. American Journal of Respiratory and Critical Care Medicine, 2001. 164(5): p. 731-737.
25. Wang, C. and P. Sahay, Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits. Sensors (Basel), 2009. 9(10): p. 8230-62.
26. Martinez, A.M. and A.C. Kak, PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001. 23(2): p. 228-233.
27. Dryahina, K., et al., Quantification of pentane in exhaled breath, a potential biomarker of bowel disease, using selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom, 2013. 27(17): p. 1983-92.
28. Spietelun, A., et al., Current trends in solid-phase microextraction (SPME) fibre coatings. Chemical Society Reviews, 2010. 39(11): p. 4524-4537.
29. Curran, A.M., et al., Comparison of the Volatile Organic Compounds Present in Human Odor Using Spme-GC/MS. Journal of Chemical Ecology, 2005. 31(7): p. 1607-1619.
30. Rudnicka, J., et al., Determination of volatile organic compounds as biomarkers of lung cancer by SPME-GC-TOF/MS and chemometrics. J Chromatogr B Analyt Technol Biomed Life Sci, 2011. 879(30): p. 3360-6.
31. Yu, H., L. Xu, and P. Wang, Solid phase microextraction for analysis of alkanes and aromatic hydrocarbons in human breath. Journal of Chromatography B, 2005. 826(1): p. 69-74.
32. Espert, A., L.A. de las Heras, and S. Karlsson, Emission of possible odourous low molecular weight compounds in recycled biofibre/polypropylene composites monitored by head-space SPME-GC–MS. Polymer Degradation and Stability, 2005. 90(3): p. 555-562.
33. Pawliszyn, J., Handbook of solid phase microextraction. 2011: Elsevier.
34. Jones, A., V. Lagesson, and C. Tagesson, Determination of isoprene in human breath by thermal desorption gas chromatography with ultraviolet detection. Journal of Chromatography B: Biomedical Sciences and Applications, 1995. 672(1): p. 1-6.
35. Raeppel, C., et al., Analysis of airborne pesticides from different chemical classes adsorbed on Radiello(R) Tenax(R) passive tubes by thermal-desorption-GC/MS. Environ Sci Pollut Res Int, 2015. 22(4): p. 2726-34.
36. Rodriguez-Navas, C., R. Forteza, and V. Cerda, Use of thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) on identification of odorant emission focus by volatile organic compounds characterisation. Chemosphere, 2012. 89(11): p. 1426-36.
37. Ruan, E.D., et al., Analysis of Volatile and Flavor Compounds in Grilled Lean Beef by Stir Bar Sorptive Extraction and Thermal Desorption—Gas Chromatography Mass Spectrometry. Food Analytical Methods, 2014. 8(2): p. 363-370.
38. Dettmer, K. and W. Engewald, Ambient air analysis of volatile organic compounds using adsorptive enrichment. Chromatographia, 2003. 57(1): p. S339-S347.
39. Woolfenden, E. and W. McClenny, METHOD TO-17: Determination of volatile organic compounds in ambient air using active sampling onto sorbent tubes. Compendium of methods for the determination of toxic organic compounds in ambient air, 1999.
40. Lautenberger, W.J., E.V. Kring, and J.A. Morello, A new personal badge monitor for organic vapors. Am Ind Hyg Assoc J, 1980. 41(10): p. 737-47.
41. Palmes, E. and A.F. GUNNISON, Personal monitoring device for gaseous contaminants. The American Industrial Hygiene Association Journal, 1973. 34(2): p. 78-81.
42. Kristensson, J. The use of ATD-50 system with fused silica capillaries in dynamic head space analysis. in Analysis of Volatiles: Methods. Applications. Proceedings. International Workshop Würzburg, Federal Republic of Germany, September 28-30, 1983. 1984. Walter de Gruyter.
43. Cavalli, J.-F., et al., Comparison of static headspace, headspace solid phase microextraction, headspace sorptive extraction, and direct thermal desorption techniques on chemical composition of French olive oils. Journal of agricultural and food chemistry, 2003. 51(26): p. 7709-7716.
44. Dadamio, J., et al., Breath biomarkers of liver cirrhosis. J Chromatogr B Analyt Technol Biomed Life Sci, 2012. 905: p. 17-22.
45. van den Velde, S., et al., Halitosis associated volatiles in breath of healthy subjects. J Chromatogr B Analyt Technol Biomed Life Sci, 2007. 853(1-2): p. 54-61.
46. Jolliffe, I., Principal component analysis. 2002: Wiley Online Library.
47. Scholz, M., Approaches to analyse and interpret biological profile data. Universitat Potsdam, 2006.
48. Corder, G.W. and D.I. Foreman, Nonparametric statistics: A step-by-step approach. 2014: John Wiley & Sons.
49. Badriyah, T., et al., Decision-tree early warning score (DTEWS) validates the design of the National Early Warning Score (NEWS). Resuscitation, 2014. 85(3): p. 418-423.
50. Friedl, M.A. and C.E. Brodley, Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment, 1997. 61(3): p. 399-409.
51. Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. in Ijcai. 1995.
52. Cauchi, M., et al., Application of gas chromatography mass spectrometry (GC–MS) in conjunction with multivariate classification for the diagnosis of gastrointestinal diseases. Metabolomics, 2014. 10(6): p. 1113-1120.
53. Gallego, E., et al., Characterization and determination of the odorous charge in the indoor air of a waste treatment facility through the evaluation of volatile organic compounds (VOCs) using TD–GC/MS. Waste management, 2012. 32(12): p. 2469-2481.
54. Dettmer, K. and W. Engewald, Adsorbent materials commonly used in air analysis for adsorptive enrichment and thermal desorption of volatile organic compounds. Analytical and Bioanalytical Chemistry, 2002. 373(6): p. 490-500.
55. Corparation, S. Retention Time Parameters. 2016; Available from: http://www.shimadzu.com/an/retentiontime_parameters.html.
56. Agilent Technologies, I., Understanding Your ChemStation, I. Agilent Technologies, Editor. 2004: Germany.
57. LookChem.com. Hexamethylcyclotrisiloxane. Available from: http://www.lookchem.com/Hexamethylcyclotrisiloxane/.
58. Herrington, J.S., Whole Air Canister Sampling and Preconcentration GC-MS Analysis for pptv Levels of Trimethylsilanol in Semiconductor Cleanroom Air.
59. Konvalina, G. and H. Haick, Sensors for breath testing: from nanomaterials to comprehensive disease detection. Accounts of chemical research, 2013. 47(1): p. 66-76.
60. Phillips, M., Method for the collection and assay of volatile organic compounds in breath. Analytical biochemistry, 1997. 247(2): p. 272-278.