簡易檢索 / 詳目顯示

研究生: 尹法軒
Yin, Fa-Xuan
論文名稱: 在線性時間下的元件配置合法化與元件最大位移最佳化
A Linear-Time Algorithm for Placement Legalization with Optimal Maximum Displacement
指導教授: 麥偉基
Mak, Wai-Kei
口試委員: 王廷基
Wang, Ting-Chi
何宗易
Ho, Tsung-Yi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 41
中文關鍵詞: 實體設計擺置合法化多重行高元件
外文關鍵詞: legalization, VLSI, Multi-row-height cell
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現代超大型積體電路設計中,因應不斷縮小的製成設計,多重排大小的標準元件庫變得越來越普及。需要複雜電路、較高能源需求、需要較高面積實作的電路會被設計成行高較高的標準原件,反之將成為行高較矮的原件。同時,因為不同大小的元件,我們不再能夠將每一行各自的擺置合法化問題視為單一子問題,導致擺置合法化的問題變得更加複雜且面臨新的挑戰。在這篇論文中,我們提出一個根據有向無環圖設計的演算法,此演算法可以在固定標準元件的先後順序的情況下得到減少元件位移的最大值的最佳化結果,且能在線性的時間內完成。首先,我們採用一種類似網路流的方法,藉由移動元件位置,盡量減少設計中密度較高的區域。接著藉由將元件移動到可以放置的最左方的位置確認現行的擺放狀況是否可以有合法的結果,也就是不超出設計邊界和不與設計障礙物重疊,之後再使用我們提出的有向無環圖演算法。然而,我們的演算法會因為被多重行高標準元件圍住的無效空間影響,因此必須再應用我們的演算法後重新擺放一些標準元件以達到降低平均元件位移的效果。實驗數據顯示,和 [1] 比較,我們提出的演算法可以降低約60%的最大元件位移量且同時平均元件位移量能有差不多的數值。


    In modern VLSI design, standard cells of different row heights become more and more common due to the aggressive scaling of advanced technologies. Such multiple-row-height cells allow cells which are complex, need more power and areas have larger heights while simple cells be shorter. Besides, it also leads to more complicated challenges for legalization problem because we cannot consider legalization problems of each row independently. In this thesis, we propose a DAG-based algorithm which is linear-time for multiple-row-height cells placement legalization with optimal maximum displacement when row assignment and cell ordering are fixed. However, not all of the design can get feasible solution when row assignment and cell ordering are fixed. Thus, we propose a framework to deal with such situation. First, we use a flow-like spreading method to avoid region of undesirably high density and check if the layout can be legalized by pushing each cell to the left most position then examining whether there is any cell overlapped with macros, blockages or out of right boundary before applying our DAG-based algorithm. However, the dead spaces caused by multiple row height cells can limit the solution quality. So, after applying DAG-based algorithm, we use a greedy reassignment method to replace the cells which can moved into dead spaces to reduce average cell displacement. Experimental results show that our proposed algorithm can reduce maximum cell displacement by 60% while having comparable average cell displacement compared to [1].

    誌謝v Acknowledgements vii 摘要ix Abstract xi 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Preliminaries 5 2.1 Mutiplerowheight Cells Legalization . . . . . . . . . . . . . . . . . . 5 2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Algorithm 9 3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 DAGbased Linear Time Legalization . . . . . . . . . . . . . . . . . . 12 4 Framework 23 4.1 Overall Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2 Cell Row Reassignment with Flowlike Method . . . . . . . . . . . . . 24 4.3 Left Aligned Violation Checking And Reassigned Cells Picking . . . . 26 4.4 Maximum Displacementaware Cell Redistribution . . . . . . . . . . . 27 4.5 Greedy Cell Reassignment . . . . . . . . . . . . . . . . . . . . . . . . 29 4.6 Cell Shifting Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 Experimental Results 33 5.1 Environment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2 Result of our method and previous work . . . . . . . . . . . . . . . . . 34 6 Conclusion 37 References 39

    [1] W. Chow, C. Pui, and E. F. Y. Young, “Legalization algorithm for multiplerow
    height standard cell design,” in Proc. of Design Automation Conference, pp. 83:1–
    83:6, June 2016.
    [2] A. K. Nima Karimpour Darav, Ismail S. Bustany and R. Mamidi, “Iccad2017
    cad contest in multideck
    standard cell legalization and benchmarks,” in
    2017 IEEE/ACM International Conference on ComputerAided
    Design (ICCAD),
    pp. 13–16, Nov 2017.
    [3] G. Wu and C. Chu, “Detailed placement algorithm for vlsi design with doublerow
    height standard cells,” IEEE Transactions on ComputerAided
    Design of Integrated
    Circuits and Systems, vol. 35, no. 9, 2015.
    [4] Y. Lin, B. Yu, X. Xu, J.R.
    Gao, N. Viswanathan, W.H.
    Liu, Z. Li, C. J. Alpert, and
    D. Z. Pan, “Mrdp: Multiplerow
    detailed placement of heterogeneoussized
    cells
    for advanced nodes,” in Proc. of International Conference on ComputerAided
    Design, pp. 7:1–7:8, Nov 2016.
    [5] C. Wang, Y. Wu, J. Chen, Y.W.
    Chang, S. Kuo, W. Zhu, and G. Fan, “An effective
    legalization algorithm for mixedcellheight
    standard cells,” in Proc. of Asia and
    South Pacific Design Automation Conference, pp. 450–455, Jan 2017.
    [6] J. Chen, Z. Zhu, W. Zhu, and Y.W.
    Chang, “Toward optimal legalization for
    mixedcellheight
    circuit designs,” in Proc. of Design Automation Conference,
    pp. 52:1–52:6, 2017.
    [7] Z. Zhu, X. Li, Y. Chen, J. Chen, W. Zhu, and Y. Chang, “Mixedcellheight
    legalization
    considering technology and region constraints,” in 2018 IEEE/ACM International
    Conference on ComputerAided
    Design (ICCAD), pp. 1–8, Nov 2018.
    [8] X. Li, J. Chen, W. Zhu, and Y.W.
    Chang, “Analytical mixedcellheight
    legalization
    considering average and maximum movement minimization,” in Proceedings
    of the 2019 International Symposium on Physical Design, ISPD ’19, (New York,
    NY, USA), pp. 27–34, ACM, 2019.
    [9] “Si2 openaccess.” http://projects.si2.org/oac_index.php/, Mar. 2015.
    [10] C.Y.
    Hung, P.Y.
    Chou, and W.K.
    Mak, “Mixedcellheight
    standard cell placement
    legalization,” in Proc. of Great Lakes Symposium on VLSI, pp. 149–154,
    2017.
    [11] H. Li, W.K.
    Chow, G. Chen, E. F. Y. Young, and B. Yu, “Routabilitydriven
    and
    fenceaware
    legalization for mixedcellheight
    circuits,” in Proc. of Design Automation
    Conference, pp. 150:1–150:6, 2018.
    [12] U. Brenner, “Bonnplace legalization: Minimizing movement by iterative augmentation,”
    IEEE Transactions on ComputerAided
    Design of Integrated Circuits and
    Systems, vol. 32, pp. 1215–1227, Aug 2013.
    [13] P. Spindler, U. Schlichtmann, and F. M. Johannes, “Abacus: Fast legalization of
    standard cell circuits with minimal movement,” in Proc. of International Symposium
    on Physical Design, pp. 47–53, 2008.
    [14] S. Dobre, A. B. Kahng, and J. Li, “Mixed cellheight
    implementation for improved
    design quality in advanced nodes,” in Proc. International Conference on
    ComputerAided
    Design, pp. 854–860, Nov 2015.
    [15] S. Goto, “An efficient algorithm for the twodimensional
    placement problem in
    electrical circuit layout,” IEEE Transactions on Circuits and Systems, vol. 28,
    pp. 12–18, January 1981.
    [16] Y. Wu and Y. Chang, “Mixedcellheight
    detailed placement considering complex
    minimumimplantarea
    constraints,” in 2017 IEEE/ACM International Conference
    on ComputerAided
    Design (ICCAD), pp. 65–72, Nov 2017.
    [17] J. Chen, P. Yang, X. Li, W. Zhu, and Y. Chang, “Mixedcellheight
    placement with
    complex minimumimplantarea
    constraints,” in 2018 IEEE/ACM International
    Conference on ComputerAided
    Design (ICCAD), pp. 1–8, Nov 2018.
    [18] Y. Tseng and Y. Chang, “Mixedcellheight
    placement considering draintodrain
    abutment,” in 2018 IEEE/ACM International Conference on ComputerAided
    Design
    (ICCAD), pp. 1–6, Nov 2018.
    [19] M. Kim, D. Lee, and I. L. Markov, “Simpl: An effective placement algorithm,”
    IEEE Transactions on ComputerAided
    Design of Integrated Circuits and Systems,
    vol. 31, pp. 50–60, Jan 2012.
    [20] N. Karimpour Darav, I. S. Bustany, A. Kennings, and L. Behjat, “A fast, robust
    network flowbased
    standardcell
    legalization method for minimizing maximum
    movement,” in Proceedings of the 2017 ACM on International Symposium on
    Physical Design, ISPD ’17, (New York, NY, USA), pp. 141–148, ACM, 2017.
    [21] N. K. Darav, I. S. Bustany, A. Kennings, D. Westwick, and L. Behjat,
    “Eh?legalizer: A high performance standardcell
    legalizer observing technology
    constraints,” ACM Trans. Des. Autom. Electron. Syst., vol. 23, pp. 43:1–43:25,
    May 2018.
    [22] M. Pan, N. Viswanathan, and C. Chu, “An efficient and effective detailed
    placement algorithm,” in ICCAD2005.
    IEEE/ACM International Conference on
    ComputerAided
    Design, 2005., pp. 48–55, Nov 2005.
    [23] W.K.
    Chow, J. Kuang, X. He, W. Cai, and E. F. Young, “Cell densitydriven
    detailed placement with displacement constraint,” in Proceedings of the 2014 on
    International Symposium on Physical Design, ISPD ’14, (New York, NY, USA),
    pp. 3–10, ACM, 2014.
    [24] K.H.
    Tseng, Y.W.
    Chang, and C. C. C. Liu, “Minimumimplantareaaware
    detailed
    placement with spacing constraints,” in Proceedings of the 53rd Annual Design
    Automation Conference, DAC ’16, (New York, NY, USA), pp. 84:1–84:6,
    ACM, 2016.
    41

    QR CODE