研究生: |
鄭立暐 Li-Wei Cheng |
---|---|
論文名稱: |
γ-PGA/Chondroitin sulfate/PCL複合材於軟骨組織工程之研究與應用 |
指導教授: |
李育德
Yu-Der Lee |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 組織工程 、聚己內酯 、聚麩胺酸 、硫酸軟骨素 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究選擇聚己內酯(Poly(ε-caprolactone), PCL)、聚麩胺酸(γ-Polyglutamic acid, γ-PGA)和硫酸軟骨素(Chondroitin sulfate, CS)做成複合支架。先合成γ-PGA接枝CS的共聚物,然後利用IR和NMR進行合成結構鑑定。之後利用微粒溶濾法製作不同比例的三維多孔性支架,讓PCL重量比例較高,維持支架的機械強度。最後植入軟骨細胞進行細胞培養,比較不同支架中細胞的生長情形。研究中測量得知共聚物含量佔支架30wt%時含水率約有740%,高於其他含量較低的支架。經過軟骨細胞培養的支架進行切片染色、GAGs assay及collagen assay後,實驗結果也顯示出共聚物含量30wt%的支架細胞生長情形優於其他的支架。各個實驗數據都顯示出共聚物的添加對細胞生長和細胞外間質的分泌造成一定程度的助益。
1 宋信文, 梁晃千, 建立人類的身體工房-組織工程, 科學發展, 2003, 362, p.6-11
2 李宣書, 淺談組織工程, 物理雙月刊, 2001, 24(3), p.430-435
3 R. Lanza, R. Langer, J. P. Vacanti, Principles of tissue engineering. 2nd ed. 1999, Tokyo: Academic Press, p671-682
4 徐善慧, 陳俊宇, 巧奪天工的人類智慧-組織工程, 科學發展, 2002, 356, p.4-9
5 E. B. Hunziker, Articular cartilage repair: basic science and clinical progress. A reviewof the current status and prospects, Osteoarthritis and Cartilage, 2001, 10, p.432-463
6 L. C. Junqueira, J. Carneiro, R. O. Kelley, Basic Histology. 9th ed. 2000, The McGraw-Hill Companies, Inc., p.127-133
7 T. Aigner, J. Stove, Collagens—major component of the physiological cartilage matrix,major target of cartilage degeneration, major tool in cartilage repair. Advanced Drug Delivery Reviews, 2003, 55(12), p.1569-1593
8 R. G. LeBaron, K. A. Athanasiou, Ex vivo synthesis of articular cartilage. Biomaterials, 2000. 21(24), p.2575-2587
9 H. M. Kronenberg, Developmental regulation of the growth plate, Nature, 2003, 423(6937), p.332-336
10 M. H. Ross, L. J. Romrell, G. I. Kaye, Histology: A Text and Atlas. 3th ed. 1998, Williams & Wilkins, p.140-157
11 楊志明, 組織工程, 九州圖書, 2005, p.360-361
12 D. R. Eyre, J. J. Wu, P.E. Woods, The Cartilage Collagens Structural and Metabolic Studies, Journal of Rheumatology, 1991, 18, p.49-51
13 J.-K. F. Suh, H. W.T. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review, Biomaterials, 2000, 21, p.2589-2598
14 J. E. silbert, G. Sugumaran, Intracellular membranes in the synthesis, transport, and metabolism of proteoglycans, Biochimica et Biophysica Acta, 1995, 1214, p.371-384
15 P. X. Ma, Scaffolds for tissue fabrication, Materialstoday, 2004, May, p.30-40
16 L. S. Nair, C. T. Laurencin, Biodegradable polymers as biomaterials, Progress in Polymer Science, 2007, 32, p.762-798
17 J. Reignier, M. A. Huneault, Preparation of interconnected poly(3-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching, Polymer, 2006, 47, p.4703-4717
18 何觀輝, 聚麩胺酸之結構特性與化學特性, 化工資訊與商情, 2006, 01(31), p.64-71
19 I. L. Shih, Y. T. Van, The production of poly-(γ-glutamic acid) from microorganisms and its various applications, Bioresource Technology, 2001, 79, p.207-225
20 蘇莉婷, 軟骨硫素在生物醫學上的應用, 化工科技與商情, 2003, 02(41), p.27-31
21 L. E. Freed, R. Langer, I. Martin, N. R. Pellis, G. Vunjak-Novakovic, Tissue engineering of cartilage in space, Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(25), p.13885-13890
22 L. Lu, S. J. Peter, M. D. Lyman, H. L. Lai, S. M. Leite, J. A. Tamada, J. P. Vacanti, R. Langer, A. G. Mikos, In vitro degradation of porous poly(L-lactic acid) foams, Biomaterials, 2000, 21, p.1595-1605
23 S. Murakami, N. Aoki, Bio-Based Hydrogels Prepared by Cross-Linking of Microbial Poly(γ-glutamic acid) with Various Saccharides, Biomacromolecules, 2006, 7, p.2122-2127
24 M. Kunioka, K. Furusawa, Poly (g-glutamic acid) hydrogel prepared from microbial poly (g-glutamic acid) and alkanediamine with water-soluble carbodiimide, Journal of applied polymer science, 1997, 65, p.1889-1896
25 J. Yang, G. Shi, J. Bei, S. Wang, Y. Cao, Q. Shang, G. Yang, W. Wang, Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture, Journal of Biomedical Materials Research, 2002, 62, p.438-446
26 B. O. Enobakhare, D. L. Bader, D. A. Lee, Quantification of Sulfated Glycosaminoglycans in Chondrocyte/Alginate Cultures, by Use of 1,9-Dimethylmethylene Blue, Analytical Biochemistry, 1996, 243, p.189-191
27 K. Penkova, R. Spirova, R. Bechev, Modification of Lowry’s method for collagen concentration measurement, Journal of Biochemical and Biophysical Methods, 1996, 32, p.33-43
28 M. Matsusaki, T. Serizawa, A. Kishida, T. Endo, M. Akashi, N. Functional Biodegradable Polymer: Synthesis and Anticoagulant Activity of Poly(γ-Glutamic Acid)sulfonate (γ-PGA-sulfonate), Bioconjugate Chemistry, 2002, 13, p.23-28
29 H. Ye, L. Jin, R. Hu, Z. Yi, J. Li, Y. Wu, X. Xi, Z. Wu, Poly(γ,L-glutamic acid)–cisplatin conjugate effectively inhibits human breast tumor xenografted in nude mice, Biomaterials, 2006, 27, p.5958–5965
30 A. Mucci, L. Schenetti, N. Volpi, 1H and 13C nuclear magnetic resonance identification and characterization of components of chondroitin sulfates of various origin, Carbohydrate Polymers, 2000, 41, p.37–45
31 C. Mustin, P. De Donato, R. Benoit, R. Erre, Spatial distribution of iron and sulphure species on the surface of pyrite, Applied Surface Science, 1993, 68, p.147-1583
32 S. H. Oh, I. K. Park, J. M. Kim, J. H. Lee, In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method, Biomaterials, 2007, 28, p.1664–1671
33 M. Kunioka, H. J. Chio, Hydrolytic degradation and mechanical properties of hydrogels prepared from microbial poly(amino acid)s, Polymer Degradation and Stability, 1998, 59, p.33-37