簡易檢索 / 詳目顯示

研究生: 邱貴榮
Guei-Rong Ciou
論文名稱: 新穎矽-鍺記憶體元件的研究與應用
Application and Study of Novel Silicon-Germanium for Memory Device
指導教授: 葉鳳生
Fong-Sheng Ye
張鼎張
Ting-Chang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 102
中文關鍵詞: 矽鍺氧奈米點快速熱退火爐管退火sputter
外文關鍵詞: SixGeyOz, nanocrystal, RTA, Furnace, 濺鍍
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,可攜帶式電子產品被廣泛的使用,諸如數位像機、筆記型電腦、mp3隨身聽、智慧型晶片卡、隨身碟等等的產品,在市場上佔有重要的地位。而這些產品都運用非揮發性記憶體作為儲存資料中心。而非揮發性記憶體又分為: (1)快閃記憶體、(2)SONOS記憶體、(3)奈米點記憶體。SONOS記憶體與奈米點記憶體是近年來研究的重點,這些記憶體都有著低功率損耗與快速的讀寫速度的特性。
    由於傳統的快閃記憶體在尺度逐漸縮減下,將面臨儲存資料流失的問題產生,而SONOS記憶體與奈米點記憶體則可以避免這個問題發生。因此在小尺度的記憶體元件製作,SONOS記憶體與奈米點記憶體將是比較好的選擇。
    本篇論文將提出一種新的製程方式來形成鍺奈米點。利用兩種靶材一起濺鍍的方式來沉積一層矽-鍺-氧薄膜材料作為儲存載子層。不同於傳統的沉積方式,這是一個新穎的製程方法來成長三層層疊的薄膜。藉著後續的兩種不同熱氧化方式:(1)快速熱氧化、(2)爐管氧化的後段處理之後,將會析出鍺的半導體奈米點。由於不同的兩種氧化時間與氧化溫度,造成不同的實驗結果。我們並提出三種不同的化學反應方程式與能帶圖,試圖用來解釋我們的實驗結果。


    In recent years, the portable electronic product have widely applied, such as digit camera, notebook computer, mp3 walkman, intelligent IC card, USB Flash personal disc and so on , these play an important role in the market. These products are all based on nonvolatile memory. Nonvolatile memories include three type: (1)conventional flash memory, (2)SONOS memory, (3)nanocrystal memory. These memories have low power losing and fast program/erase speed.
    Flash memory has leaking and program/erase problems when scaling down, but SONOS and nanocrystal memory have not these problems. Therefore, in the process of scaling down memory device, SONOS and nanocrystal memory are the better choice.
    In this thesis, we will bring up a new idea of crystallize nanocrystal. Co-sputter system has been introduced to deposit a SizGeyOz film to replace the Floating Gate in Flash structure. Unlike the conventional process, this is a new process to deposit tri-layer of memory structure, and SixGeyOz is a new material. After two different thermal treatments è RTO and Furance, Ge in the SizGeyOz film will be segregated to crystallize Ge nanodots embedded in the SiO2/GeOx film. There are three situations in RTO and Furnace oxidation because the different duration and temperature of oxidation, Three energy band models and chemical formulas can be considered to support experiment results.

    Chinese Abstract ---------------------------------------- i English Abstract -------------------------------------- iii Acknowledgment  ---------------------------------------- v Contents  -------------------------------------- vii Figure Captions  ----------------------------------------ix Chapter 1 Introduction 1.1 General Background  -------------------------- 1 1.2 SONOS nonvolatile memory device -------------- 4 1.3 Nanocrystal nonvolatile memory device -------- 5 1.4 Motivation -----------------------------------10 1.5 Organization of the dissertation -------------12 Chapter 2 Basic principles of nanocrystal memory 2.1 Introduction --------------------------------- 13 2.2 The principle of the threshold voltage shift--- 13 2.3 Basic operation principles ------------------- 14 Chapter 3 Experimental process to form germanium nanocrystal by Co-sputter system and thermal treatment 3.1 Experimental sample preparation -------------- 16 3.2 Result and discussion ------------------------ 18 3.3 Conclusion ----------------------------------- 18 Chapter 4 Result and discussion of experimental samples after thermal treatment ( RTO and Furnace ) 4.1 Introduction --------------------------------- 19 4.2 Furnace oxidation 800℃ 30min ------------------ 19 4.3 RTO ( RTA + O2 ) 600℃ 60sec and 900℃ 60sec -- 21 Chapter 5 Conclusions --------------------- 33 References -----------------------------------------35

    Chapter 1:
    [1.1] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices”, Bell Syst. Tech, J., 46, 1288 (1967).
    [1.2] J. D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Transaction on Nanotechnology, 1, 72 (2002).
    [1.3] M. H. White, Y. Yang, A. Purwar, and M. L. French, ”A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Int’l Nonvolatile Memory Technology Conference, 52 (1996).
    [1.4] M. H. White, D. A. Adams, and J. Bu, “On the go with SONOS”, IEEE circuits & devices, 16, 22 (2000).
    [1.5] H. E. Maes, J. Witters, and G. Groeseneken, Proc. 17 European Solid State Devices Res. Conf. Bologna 1987, 157 (1988).
    [1.6] S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage”, IEEE Int. Electron Devices Meeting Tech. Dig., 521 (1995).
    [1.7] J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee, and Y. Lee, “Room temperature operation of a quantum-dot flash memory”, IEEE Electron Device Lett., 18, 278 (1997).
    [1.8] Y. C. King, T. J. King, and C. Hu, “MOS memory using germanium nanocrystals formed by thermal oxidation of Si1-xGex”, IEEE Int. Electron Devices Meeting Tech. Dig., 115 (1998).
    [1.9] W. D. Brown and J. E. Brewer, Nonvolatile Semiconductor Memory Technology, IEEE press New York, p. 309, 1998.
    [1.10] J De Blauwe, Nanocrystal nonvolatile memory devices. IEEE Trans. Nanotechnol, 2002.
    [1.11] S.Lombardoa and R.A.Puglisi, “Distribution of the Threshold Voltage Window in Nanocrystal Memories with Si Dots Formed by Chemical Vapor Deposition: Effect of Partial Self-Ordering”, MVSMW, p.69 (2004).
    [1.12] M. She, Y. C. King, T. J. King, and C. Hu, IEEE Device Research Conference, 139 (2001).
    [1.13] I. Kim, S. Han, K. Han, J. Lee, and H. Shin, IEEE Electr. Device Lett., “Room temperature single electron effects in a Si nano-crystal memory”, 20, 630 (1999).
    [1.14] I. G. Kim, H. S. Kim, J. H. Lee, and H. C. Shin, Ext. Abst. SSDM, 1998, p. 170.
    [1.15] I. G. Kim, S. Y. Han, H. S. Kim, J. H. Lee, B. H. Choi, S. W. Hwang, D. Y. Ahn, and H. C. Shin, IEEE Int. Electron Devices Meeting Tech. Dig., p. 111 (1998).
    [1.16] A.Fernandesa, B.DeSalvo and T.Baron, “Memory Characteristics of Si Quantum Dot Devices with SiO2/ALD Al2O3 Tunneling Dielectrics”, IEEE (2001).
    [1.17] A. Kanjilal, J. L. Hansen, P. Gaiduk, and A. N. Larsen, Appl. Phys. Lett., 82, 1212 (2003).
    [1.18] Y. C. King, T. J. King, and C. Hu, IEEE Trans. Electron Devices, 48, 696 (2001).
    [1.19] F. K. LeGoues, R. Rosenberg, T. Nguyen, F. Himpsel, and B. S. Meyerson, J. Appl. Phys., 65, 1724 (1989).
    [1.20] J. Eugene, F. K. LeGoues, V. P. Kesan, S. S. Iyer, and F. M. d’Heurle, Appl. Phys. Lett., 59, 78 (1991).
    [1.21] M. L. Ostraat, J. W. De Blauwe, M. L. Green, L. D. Bell, M. L. Brongersma, J. Casperson, R. C. Flagan, and H. A. Atwater, Appl. Phys. Lett., 79, 433 (2001).
    [1.22] X. X. Qu, K. J. Chen, X. F. Huang, Z. F. Li, and D. Feng, Appl. Phys. Lett., 64, 1656 (1994).
    [1.23] N. M. Park, S. H. Choi, and S. J. Park, Appl. Phys. Lett., 81, 1092 (2002).
    [1.24] Y. H. Kwon, C. J. Park, W. C. Lee, D. J. Fu, Y. Shon, T. W. Kang, C. Y. Hong, H. Y. Cho, and K. L. Wang, Appl. Phys. Lett., 80, 2502 (2002).
    [1.25] R. Phba, N. Sugiyama, K. Uchida, J. Koga, and A. Toriumi, “Nonvolatile Si quantum memory with self-aligned doubly-stacked dots”, IEEE Trans. Electron Devices, 49, 1392 (2002).
    [1.26] J. J. Lee, X. Wang, W. Bai, N. Lu, and D. L. Kwong, IEEE Trans. Electron Devices, “Theoretical and experimental investigation of Si nanocrystal memory device with HfO2 high-k tunneling dielectric”, 50, 2067 (2003).
    [1.27] I. Kim, S. Han, H. Kim, J. Lee, B. Choi, S. Hwang, D. Ahn, and H. Shin, IEEE Int. Electron Devices Meeting Tech. Dig., 1998, pp. 111-114.
    [1.28] A. Fernandes, B. DeSalvo, T. Baron, J. F. Damlencourt, A. M. Papon, D. Lafond, D. Mariolle, B. Guillaumot, P. Besson, G. Ghibaudo, G. Pananakakis, F. Martin, and S. Haukka, IEEE Int. Electron Devices Meeting Tech. Dig., 2001, pp. 155-158.
    [1.29] K. Han, I. Kim, and H. Shin, IEEE Trans. Electron Devices, “Characteristics of p-channel Si nano-crystal memory”, 48, 874 (2001).

    Chapter 2:
    [2.1] William D.Brown, Joe E.brewer “Nonvolatile Semiconductor Memory Technology : “A Comprehensive guide to understanding and using NVSM devices”,IEEE press.
    [2.2] P. E. Cottrell, R. R. Trountman, “Hot electron emission in n-channel IGFET’S,” IEEE vol.sc-14, p442,1979
    [2.3] B. Eitanet, ”Hot electron injection into oxide in n channel mos devices, IEEE Trans. Electron.
    [2.4] San, K.T.; Kaya, C.; Ma, T.P.;” Effects of erase source bias on Flash EPROM device reliability” Electron Devices, IEEE Transactions on Volume 42, Issue 1, Jan. 1995 Page(s):150 – 159
    [2.5] Steve S. Chung, Cherng-Ming Yih, Shui-Ming Cheng, and Mong-Song Liang “A New Technique for Hot Carrier Reliability Evaluations of Flash Memory Cell After Long-Term Program/Erase Cycles” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 46, NO. 9, SEPTEMBER 1999 1883
    [2.6] M.Lenzlinger,..” Fowler-Nordheim Tunneling in thermall grown SiO2” , J. App. Phys.,vol. 40, p.278, 1969

    Chapter 4:
    [4.1] H.G. CHEW1, W.K. CHOI1,2, Y.L. FOO3, W.K. CHIM1,2, E.A. FITZGERALD1,4, F. ZHENG2,S.K. SAMANTA2, Z.J. VOON2 , K.C. SEOW2 “TEM study on the evolution of Ge nanocrystals in Si oxide matrix as a function of Ge concentration and the Si reduction process” , J. Appl. Phys.
    [4.2] Choi S.-h.1; Han S.-c.; Hwang S. “Defect-related photoluminescence and Raman studies on the growth of Ge nanocrystals during annealing of Ge+-implanted SiO2 films” , Thin Solid Films, Volume 413, Number 1, 24 June 2002, pp. 177-180(4)
    [4.3] W. K. Choi, Y. W. Ho, S. P. Ng and V. Ng, “Microstructural and photoluminescence studies of germanium nanocrystals in amorphous silicon oxide films,” J. Appl. Phys. 89, pp. 2168-2172 (2001)
    [4.4] http://www.srdata.nist.gov/xps/ , Database Search Menu □ Selected Groups of Elements
    [4.5] V. V. Afanas’ev and A. Stesemans “Energy band alignment at (100)Ge/HfO2” , Applied Physics Letters , Vol84 , Number13
    [4.6] 施敏, 半導體元件物理與製程技術第二版
    [4.7] M Schulz “Deep trap levels of ion-implanted germanium in silicon measured by Schottky contact techniques” , Applied Physics Letters, 2003
    [4.8] P Vaveliuk, A Lencina, PC de Oliveira, N Bolognini , “Photorefractive harmonic gratings within the shallow trap model” , Quantum Electronics, IEEE Journal of, 2002
    [4.9] DJ DiMaria “Defect generation under substrate-hot-electron injection into ultrathin silicon dioxide layers” , Journal of Applied Physics, 1999 - link.aip.org

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE