簡易檢索 / 詳目顯示

研究生: 陳仕達
Shih-Ta Chen
論文名稱: 探討微圖案培養時細胞聚集之成因,以及結合微接觸壓印與模板侷限收集分析皮質神經生長錐
指導教授: 張兗君
Yen-Chung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 71
中文關鍵詞: 生長錐微機電系統神經次細胞微接觸壓印細胞聚集
外文關鍵詞: growth cone, MEMS, neuron, subcellular, microcontact printing, aggregate
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在進入蛋白質體學(proteomics)的現今世代,分離、收集、純化各種次細胞(subcellular)結構,進行次蛋白質體(subproteomcis)分析,早已經是科學家們專注的焦點。而本實驗室致力於神經科學的研究,結合微機電系統工程與神經細胞培養,發展以軟式微影(soft lithography)為基礎,製作細胞生長的微圖案,達到分離細胞體與神經纖維的目的,對於生長錐進行收集與生化分析。在研究中發現,以微接觸壓印製造微圖案培養的神經細胞,會產生異常的細胞聚集(aggregates)。細胞聚集具有種種異於一般單一神經細胞的性質,會妨礙到細胞在微圖案上的生長。藉由結合微接觸壓印和模板侷限製作微圖案,可成功地將神經細胞培養成細胞陣列,使其細胞體、神經纖維、以及生長錐(growth cones)各集中不同的區域,且避免細胞聚集的產生。再加上對準系統,我們可將生長錐引導至特定位置,收集生長錐的蛋白質,進行凝膠電泳分析。跟神經細胞的total cells lysate比較,發現蛋白質的組成不同。利用這套技術,可將神經細胞培養成特定的陣列,並且直接地大量收集各種次細胞構造,進行生化分析與蛋白質體學的研究。配合cell adhesion molecular (CAM)蛋白質,在未來可望能夠引導神經纖維發展成前突觸結構,能夠對突觸作蛋白質體的分析,對於突觸的形成與特性,能夠有更加深入的探討。


    目錄 摘要 目錄 壹、 緒論……………………………………1 貳、 實驗材料與方法………………………6 參、 結果……………………………………26 肆、 討論……………………………………39 伍、 參考文獻………………………………50 陸、 圖表……………………………………53

    Barnes AP, Lilley BN, Pan YA, Plummer LJ, Powell AW, Raines AN, Sanes JR, Polleux F (2007) LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons. Cell 129:549-563.

    Biederer T, Sara Y, Mozhayeva M, Atasoy D, Liu X, Kavalali ET, Sudhof TC (2002) SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297:1525-1531.

    Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35:567-576.

    Chang JC, Brewer GJ, Wheeler BC (2003) A modified microstamping technique enhances polylysine transfer and neuronal cell patterning. Biomaterials 24:2863-2870.

    Chang WC, Keller CG, Sretavan DW (2006) Isolation of neuronal substructures and precise neural microdissection using a nanocutting device. J Neurosci Methods 152:83-90.

    Chisholm A, Tessier-Lavigne M (1999) Conservation and divergence of axon guidance mechanisms. Curr Opin Neurobiol 9:603-615.

    Craig AM, Graf ER, Linhoff MW (2006) How to build a central synapse: clues from cell culture. Trends Neurosci 29:8-20.

    Dent EW, Gertler FB (2003) Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40:209-227.

    Ellis L, Katz F, Pfenninger KH (1985a) Nerve growth cones isolated from fetal rat brain. II. Cyclic adenosine 3':5'-monophosphate (cAMP)-binding proteins and cAMP-dependent protein phosphorylation. J Neurosci 5:1393-1401.

    Ellis L, Wallis I, Abreu E, Pfenninger KH (1985b) Nerve growth cones isolated from fetal rat brain. IV. Preparation of a membrane subfraction and identification of a membrane glycoprotein expressed on sprouting neurons. J Cell Biol 101:1977-1989.

    Folch A, Jo BH, Hurtado O, Beebe DJ, Toner M (2000) Microfabricated elastomeric stencils for micropatterning cell cultures. J Biomed Mater Res 52:346-353.

    Katz F, Ellis L, Pfenninger KH (1985) Nerve growth cones isolated from fetal rat brain. III. Calcium-dependent protein phosphorylation. J Neurosci 5:1402-1411.

    Leung KM, van Horck FP, Lin AC, Allison R, Standart N, Holt CE (2006) Asymmetrical beta-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nat Neurosci 9:1247-1256.

    Nam Y, Musick K, Wheeler BC (2006) Application of a PDMS microstencil as a replaceable insulator toward a single-use planar microelectrode array. Biomed Microdevices 8:375-381.

    Pal R, Sung KE, Burns MA (2006) Microstencils for the patterning of nontraditional materials. Langmuir 22:5392-5397.

    Park TH, Shuler ML (2003) Integration of cell culture and microfabrication technology. Biotechnol Prog 19:243-253.

    Pfenninger KH, Ellis L, Johnson MP, Friedman LB, Somlo S (1983) Nerve growth cones isolated from fetal rat brain: subcellular fractionation and characterization. Cell 35:573-584.

    Ramon y Cajal, S. (1890) Anat. Anz 5, 609-613. Extract from Ramon y Cajal, S. (1909). “Histology of the Nervous System” (N. Swanson and L. W. Swanson, transl.). Oxford Univ. Press, Oxford, 1995.

    Scheiffele P (2003) Cell-cell signaling during synapse formation in the CNS. Annu Rev Neurosci 26:485-508.

    Scheiffele P, Fan J, Choih J, Fetter R, Serafini T (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101:657-669.

    Seeds NW (1971) Biochemical differentiation in reaggregating brain cell culture. Proc Natl Acad Sci U S A 68:1858-1861.

    Seeds NW, Vatter AE (1971) Synaptogenesis in reaggregating brain cell culture. Proc Natl Acad Sci U S A 68:3219-3222.

    Shelly M, Cancedda L, Heilshorn S, Sumbre G, Poo MM (2007) LKB1/STRAD promotes axon initiation during neuronal polarization. Cell 129:565-577.

    Stenger DA, Gross GW, Keefer EW, Shaffer KM, Andreadis JD, Ma W, Pancrazio JJ (2001) Detection of physiologically active compounds using cell-based biosensors. Trends Biotechnol 19:304-309.

    Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123-1133.

    Trapp BD, Honegger P, Richelson E, Webster HD (1979) Morphological differentiation of mechanically dissociated fetal rat brain in aggregating cell cultures. Brain Res 160:117-130.

    Wyart C, Ybert C, Bourdieu L, Herr C, Prinz C, Chatenay D (2002) Constrained synaptic connectivity in functional mammalian neuronal networks grown on patterned surfaces. J Neurosci Methods 117:123-131.

    Yao J, Sasaki Y, Wen Z, Bassell GJ, Zheng JQ (2006) An essential role for beta-actin mRNA localization and translation in Ca2+-dependent growth cone guidance. Nat Neurosci 9:1265-1273.

    Xia Y, Whitesides GM. (1998) Soft lithography. Angew Chem Int Ed 37:550-75

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE