研究生: |
陳仕達 Shih-Ta Chen |
---|---|
論文名稱: |
探討微圖案培養時細胞聚集之成因,以及結合微接觸壓印與模板侷限收集分析皮質神經生長錐 |
指導教授: |
張兗君
Yen-Chung Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 生長錐 、微機電系統 、神經 、次細胞 、微接觸壓印 、細胞聚集 |
外文關鍵詞: | growth cone, MEMS, neuron, subcellular, microcontact printing, aggregate |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在進入蛋白質體學(proteomics)的現今世代,分離、收集、純化各種次細胞(subcellular)結構,進行次蛋白質體(subproteomcis)分析,早已經是科學家們專注的焦點。而本實驗室致力於神經科學的研究,結合微機電系統工程與神經細胞培養,發展以軟式微影(soft lithography)為基礎,製作細胞生長的微圖案,達到分離細胞體與神經纖維的目的,對於生長錐進行收集與生化分析。在研究中發現,以微接觸壓印製造微圖案培養的神經細胞,會產生異常的細胞聚集(aggregates)。細胞聚集具有種種異於一般單一神經細胞的性質,會妨礙到細胞在微圖案上的生長。藉由結合微接觸壓印和模板侷限製作微圖案,可成功地將神經細胞培養成細胞陣列,使其細胞體、神經纖維、以及生長錐(growth cones)各集中不同的區域,且避免細胞聚集的產生。再加上對準系統,我們可將生長錐引導至特定位置,收集生長錐的蛋白質,進行凝膠電泳分析。跟神經細胞的total cells lysate比較,發現蛋白質的組成不同。利用這套技術,可將神經細胞培養成特定的陣列,並且直接地大量收集各種次細胞構造,進行生化分析與蛋白質體學的研究。配合cell adhesion molecular (CAM)蛋白質,在未來可望能夠引導神經纖維發展成前突觸結構,能夠對突觸作蛋白質體的分析,對於突觸的形成與特性,能夠有更加深入的探討。
Barnes AP, Lilley BN, Pan YA, Plummer LJ, Powell AW, Raines AN, Sanes JR, Polleux F (2007) LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons. Cell 129:549-563.
Biederer T, Sara Y, Mozhayeva M, Atasoy D, Liu X, Kavalali ET, Sudhof TC (2002) SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297:1525-1531.
Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35:567-576.
Chang JC, Brewer GJ, Wheeler BC (2003) A modified microstamping technique enhances polylysine transfer and neuronal cell patterning. Biomaterials 24:2863-2870.
Chang WC, Keller CG, Sretavan DW (2006) Isolation of neuronal substructures and precise neural microdissection using a nanocutting device. J Neurosci Methods 152:83-90.
Chisholm A, Tessier-Lavigne M (1999) Conservation and divergence of axon guidance mechanisms. Curr Opin Neurobiol 9:603-615.
Craig AM, Graf ER, Linhoff MW (2006) How to build a central synapse: clues from cell culture. Trends Neurosci 29:8-20.
Dent EW, Gertler FB (2003) Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40:209-227.
Ellis L, Katz F, Pfenninger KH (1985a) Nerve growth cones isolated from fetal rat brain. II. Cyclic adenosine 3':5'-monophosphate (cAMP)-binding proteins and cAMP-dependent protein phosphorylation. J Neurosci 5:1393-1401.
Ellis L, Wallis I, Abreu E, Pfenninger KH (1985b) Nerve growth cones isolated from fetal rat brain. IV. Preparation of a membrane subfraction and identification of a membrane glycoprotein expressed on sprouting neurons. J Cell Biol 101:1977-1989.
Folch A, Jo BH, Hurtado O, Beebe DJ, Toner M (2000) Microfabricated elastomeric stencils for micropatterning cell cultures. J Biomed Mater Res 52:346-353.
Katz F, Ellis L, Pfenninger KH (1985) Nerve growth cones isolated from fetal rat brain. III. Calcium-dependent protein phosphorylation. J Neurosci 5:1402-1411.
Leung KM, van Horck FP, Lin AC, Allison R, Standart N, Holt CE (2006) Asymmetrical beta-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nat Neurosci 9:1247-1256.
Nam Y, Musick K, Wheeler BC (2006) Application of a PDMS microstencil as a replaceable insulator toward a single-use planar microelectrode array. Biomed Microdevices 8:375-381.
Pal R, Sung KE, Burns MA (2006) Microstencils for the patterning of nontraditional materials. Langmuir 22:5392-5397.
Park TH, Shuler ML (2003) Integration of cell culture and microfabrication technology. Biotechnol Prog 19:243-253.
Pfenninger KH, Ellis L, Johnson MP, Friedman LB, Somlo S (1983) Nerve growth cones isolated from fetal rat brain: subcellular fractionation and characterization. Cell 35:573-584.
Ramon y Cajal, S. (1890) Anat. Anz 5, 609-613. Extract from Ramon y Cajal, S. (1909). “Histology of the Nervous System” (N. Swanson and L. W. Swanson, transl.). Oxford Univ. Press, Oxford, 1995.
Scheiffele P (2003) Cell-cell signaling during synapse formation in the CNS. Annu Rev Neurosci 26:485-508.
Scheiffele P, Fan J, Choih J, Fetter R, Serafini T (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101:657-669.
Seeds NW (1971) Biochemical differentiation in reaggregating brain cell culture. Proc Natl Acad Sci U S A 68:1858-1861.
Seeds NW, Vatter AE (1971) Synaptogenesis in reaggregating brain cell culture. Proc Natl Acad Sci U S A 68:3219-3222.
Shelly M, Cancedda L, Heilshorn S, Sumbre G, Poo MM (2007) LKB1/STRAD promotes axon initiation during neuronal polarization. Cell 129:565-577.
Stenger DA, Gross GW, Keefer EW, Shaffer KM, Andreadis JD, Ma W, Pancrazio JJ (2001) Detection of physiologically active compounds using cell-based biosensors. Trends Biotechnol 19:304-309.
Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123-1133.
Trapp BD, Honegger P, Richelson E, Webster HD (1979) Morphological differentiation of mechanically dissociated fetal rat brain in aggregating cell cultures. Brain Res 160:117-130.
Wyart C, Ybert C, Bourdieu L, Herr C, Prinz C, Chatenay D (2002) Constrained synaptic connectivity in functional mammalian neuronal networks grown on patterned surfaces. J Neurosci Methods 117:123-131.
Yao J, Sasaki Y, Wen Z, Bassell GJ, Zheng JQ (2006) An essential role for beta-actin mRNA localization and translation in Ca2+-dependent growth cone guidance. Nat Neurosci 9:1265-1273.
Xia Y, Whitesides GM. (1998) Soft lithography. Angew Chem Int Ed 37:550-75