簡易檢索 / 詳目顯示

研究生: 貝格奇
Arnab Bagchi
論文名稱: 芳香族分子在分子束中及在基質輔助雷射脫附游離過程中的光誘發反應
Photo-induced reactions of aromatics in molecular beam and during MALDI process
指導教授: 倪其焜
Ni, Chi-Kung
口試委員: 高橋開人
Kaito Takahashi
李遠哲
Lee, Yuan-Tseh
林金全
Lin, King- Chuen
曾文碧
Tzeng, Wen-Bih
林志民
Lin, Jim Jr-Min
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 120
中文關鍵詞: Photodissociation DynamicsMolecular BeamTwo-step Laser Desorption/Ionization mass spectrometryVUV photoionizationMALDI
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The first part of this thesis features photodissociation dynamics experiments performed on a choice of molecular systems using multimass ion imaging technique. The desired system was placed at collisionless environment in molecular beam and was expanded inside a vacuum chamber. Photoionization and photodissociation of molecules in the molecular beam were accomplished by excitation with a UV laser beam. The excited photo-fragments were subsequently ionized by vacuum ultraviolet (VUV, 118 nm) laser pulse at a certain delay time. The primary photodissociation and photoionization along with its dynamics in the gas phase have been studied for diverse aromatic molecules at different UV photolysis wavelengths. The unique features of multimass ion imaging technique reveal primary photodissociation channels like –CO2 and –COOH elimination in addition to the usually observed –OH dissociation by other experimental techniques for the aromatic molecule benzoic acid. Studies of photodissociation dynamics for another interesting aromatic compound benzaldehyde indicate at least four processes including –CO and –COH dissociation channels upon UV excitation by various photon energies on benzaldehyde molecular beam. Photodissociation and photoionization of potential MALDI matrix molecules like 2,5-Dihydroxy benzoic acid (2,5-DHB) and 2,5-Dihydroxyacetophenone (2,5-DHAP) expose their photochemistry in gas phase after being excited by UV photon and also acquaint with photon number dependences for the observed photofragments when studied by means of multi-photon ionization. At 355 nm photolysis wavelength 2,5-DHB molecule display H2O elimination as a major dissociation channel from the electronic ground state. For both the MALDI matrix molecules an estimated concentration of neutral fragments outnumbers the ionic fragments by 105-106 to one, when studied at 355 nm photolysis wavelength in molecular beam environment. Multiphoton ionization of matrix clusters generated in molecular beam environment do not show any protonated or negatively charged ions as usually observed in solid state MALDI. The observations indicate protonation or deprotonation reactions usually observed in solid state MALDI experiment must involve some complicated reactions; whereas any possible photoionization processes occurring in the gas phase after the matrix molecules vaporize from the condensed phase, does not seem to play an important role during MALDI process.
    The second part of the thesis involves a study of condensed phase to gas phase desorption-ionization process using two-step laser desorption/ionization mass spectrometry. Here a second VUV (118 nm) laser pulse is interrogated to post-ionize the neutral species in desorption plume after they primarily get desorbed into gas phase by initial UV laser pulse. A direct correlation between the instantaneously formed ions generated by initial UV laser pulse and the post-ionized neutral molecules have been performed with an anticipation to characterize overall desorption event by decoupling desorption and ionization processes. Two of the most widely used MALDI matrix compounds 2,5-DHB and α-Cyano-4-hydroxycinnamic acid (CHCA) have been chosen as molecular systems. A better signal correlation between the directly formed ions and post-ionized neutrals have been observed for the matrix molecule CHCA unlike 2,5-DHB. The desorption and ionization events for pure matrix molecules have been studied to address some of the silent features in MALDI and throw light for better understanding of the fundamental material ejection in conventional UV-MALDI phenomenon. The objective of this particular experimental purpose is an attempt towards an improved quantitative analytical applications using MALDI mass spectrometry through a perception of the underlying basic mechanism for matrix-assisted laser desorption/ionization phenomenon.


    Table of contents Abstract iv Acknowledgement vi Table of contents viii Figure captions xiii 1. Introduction 1.1 Photodissociation dynamics 1 1.2 MALDI process and its relevance with two-step laser desorption/ionization spectrometry 6 References 8 2. Experimental techniques and methodology 2.1 Multimass Ion Imaging Technique 10 2.1.1 Overview 10 2.1.2 Assembly of molecular beam with vacuum and laser system 14 2.1.3 Mass spectrometer 15 2.1.4 Methodology 17 2.1.4.1 Multiphoton Dissociation 17 2.1.4.2 Multiphoton Ionization 19 2.2 Two-step laser desorption/ionization mass spectrometry 20 2.2.1 Overview and experimental conditions 20 2.2.1.1 Desorption system 20 2.2.1.2 Post-ionization 21 2.2.1.3 Mass spectrometer 22 References 24 3. Photodissociation dynamics of benzoic acid 3.1 Abstract 25 3.2 Introduction 25 3.3 Experiment 26 3.4 Results 27 3.5 Discussion 31 3.6 Computational support 32 3.7 Summary 35 References 35 4. Photodissociation dynamics of benzaldehyde 4.1 Abstract 37 4.2 Introduction 37 4.3 Experiment 41 4.4 Results 42 4.4.1 Dissociation channels and distribution of translational energy of photofragments 42 4.4.1.1 Photolysis at 193 nm 42 4.4.1.2 Photolysis at 248 nm 43 4.4.2 Theoretical calculation 45 4.4.2.1 Potential energy surface for the reaction 45 4.4.2.2 Micro canonical rate coefficient calculation 49 4.5 Discussion 50 4.6 Summery 50 References 51 5. Multiphoton dissociation and ionization of 2,5-dihydroxyacetophenone 5.1 Abstract 54 5.2 Introduction 55 5.3 Experiment 55 5.3.1 Multiphoton dissociation 55 5.3.2 Multiphoton ionization 56 5.4 Results and discussion 56 5.4.1 Multiphoton ionization in a molecular beam 56 5.4.1.1 Parent ion 59 5.4.1.2 Ionic fragments 59 5.4.2 Multiphoton dissociation in a molecular beam 61 5.4.2.1 Total neutral fragments 63 5.4.2.2 Dissociative ionization of undissociated excited DHAP 65 5.4.3 Photoionization of DHAP clusters 73 5.4.3.1 Cluster study in a molecular beam 73 5.4.3.2 Cluster study using MALDI 74 5.5 General perspective of ionization mechanism 74 5.6 Summery 76 References 77 6. Photodissociation and photoionization of 2,5-dihydroxybenzoic acid 6.1 Abstract 78 6.2 Introduction 79 6.3 Experiment 79 6.4 Experimental results 80 6.4.1 Photodissociation at 193 nm 80 6.4.2 Photodissociation at 355 nm 84 6.4.3 Multiphoton ionization at 355 nm 86 6.4.4 Multiphoton ionization of 2,5-DHB clusters in a molecular beam 89 6.5 Discussion 90 6.6 Summery 94 References 95 7. Direct ion-neutral correlation for MALDI matrices 7.1 Abstract 97 7.2 Introduction 98 7.3 Experiment 102 7.4 Experimental results 103 7.4.1 Ion-neutral correlation for 2,5-DHB 103 7.4.2 Ion-neutral correlation for α-CHCA 105 7.4.3 Estimation of spatial overlap of plume with VUV light and ionization efficiency calculation for VUV 108 7.5 Discussion 110 7.6 Summery 113 References 113 Conclusion and Outlook 116

    References:
    chaper 1.
    1. A. J. Demaria and C. J. Ultee, Applied Physics Letters 9 (1), 67-& (1966).
    2. R. Kissner, T. Nauser, P. Bugnon, P. G. Lye and W. H. Koppenol, Chemical Research in Toxicology 10 (11), 1285-1292 (1997).
    3. C. E. Otis, J. L. Knee and P. M. Johnson, J. Chem. Phys. 78, 2091 (1983).
    4. S. A. Lee, Journal of Chemical Physics 68 (2), 602-607 (1978).
    5. M. A. Duncan, T. G. Dietz, M. O. Liverman and R. E. Smalley, J. Phys. Chem. 85, 7-9 (1981).
    6. N. Nakashima and K. Yoshihara, Journal of Chemical Physics 77 (12), 6040-6050 (1982).
    7. M. Sumitani, D. V. Oconnor, Y. Takagi, N. Nakashima, K. Kamogawa, Y. Udagawa and K. Yoshihara, Chemical Physics 93 (3), 359-371 (1985).
    8. A. M. Wodtke and Y. T. Lee, High resolution photofragment translational spectroscopy (Royal Society of Chemistry, London, 1987).
    9. D. W. Chandler and P. L. Houston, Journal of Chemical Physics 87 (2), 1445-1447 (1987).
    10. A. Eppink and D. H. Parker, Review of Scientific Instruments 68 (9), 3477-3484 (1997).
    11. M. Mons and I. Dimicoli, Chemical Physics Letters 131 (4-5), 298-302 (1986).
    12. S. T. Tsai, C. K. Lin, Y. T. Lee and C. K. Ni, Review of Scientific Instruments 72 (4), 1963-1969 (2001).
    13. C. L. Huang, Y.-T. Lee and C.-K. Ni, in Modern Trends in Chemical Reaction Dynamics: Experiment and Theory (Part II) edited by X. Y. K. Liu(World Scientific Publisher 2004), pp. 163-213.
    14. F. Hillenkamp and M. Karas, Methods in Enzymology 193, 280-295 (1990).
    15. K. Tanaka, Angewandte Chemie-International Edition 42 (33), 3860-3870 (2003).
    16. M. Karas, D. Bachmann, U. Bahr and F. Hillenkamp, International Journal of Mass Spectrometry and Ion Processes 78, 53-68 (1987).
    17. M. Karas, D. Bachmann and F. Hillenkamp, Analytical Chemistry 57 (14), 2935- 2939 (1985).
    18. M. Karas, U. Bahr, K. Strupat, F. Hillenkamp, A. Tsarbopoulos and B. N. Pramanik, Analytical Chemistry 67 (3), 675-679 (1995).
    19. J. Krause, M. Stoeckli and U. P. Schlunegger, Rapid Communications in Mass Spectrometry 10 (15), 1927-1933 (1996).
    20. T. W. Jaskolla, M. Karas, U. Roth, K. Steinert, C. Menzel and K. Reihs, Journal of the American Society for Mass Spectrometry 20 (6), 1104-1114 (2009).
    21. K. Tang, S. L. Allman, R. B. Jones and C. H. Chen, Analytical Chemistry 65 (15), 2164-2166 (1993).
    22. H. Ehring, M. Karas and F. Hillenkamp, Organic Mass Spectrometry 27 (4), 472- 480 (1992).
    23. M. Karas, M. Gluckmann and J. Schafer, Journal of Mass Spectrometry 35 (1), 1-12 (2000).
    24. M. Karas and R. Kruger, Chemical Reviews 103 (2), 427-439 (2003).
    25. R. Knochenmuss, Journal of Mass Spectrometry 37 (8), 867-877 (2002).
    26. R. Zenobi and R. Knochenmuss, Mass Spectrometry Reviews 17 (5), 337- 366 (1998).

    chaper 2.
    1. C. L. Huang, Y.-T. Lee and C.-K. Ni, in Modern Trends in Chemical Reaction Dynamics: Experiment and Theory (Part II), edited by X. Yang and K. Liu (World Scientific Publisher 2004), pp. 163-213.
    2. C. K. Ni and Y. T. Lee, International Reviews in Physical Chemistry 23 (2), 187-218 (2004).
    3. S. T. Tsai, C. K. Lin, Y. T. Lee and C. K. Ni, Review of Scientific Instruments 72 (4), 1963-1969 (2001).
    4. Y. Morisawa, Y. A. Dyakov, C.-M. Tseng, Y. T. Lee and C.-K. Ni, Journal of Physical Chemistry A 113 (1), 97-102 (2009).

    chaper 3.
    1. S. Dhanya, D. K. Maity, H. P. Upadhyaya, A. Kumar, P. D. Naik and R. D. Saini, Journal of Chemical Physics 118 (22), 10093-10100 (2003).
    2. K. K. Pushpa, H. P. Upadhyaya, A. Kumar, P. D. Naik, P. Bajaj and J. P. Mittal, Journal of Chemical Physics 120 (15), 6964-6972 (2004).
    3. H. P. Upadhyaya, A. Kumar, P. D. Naik, A. V. Sapre and J. P. Mittal, Journal of Chemical Physics 117 (22), 10097-10103 (2002).
    4. A. Kumar, H. P. Upadhyaya, P. D. Naik, D. K. Maity and J. P. Mittal, Journal of Physical Chemistry A 106 (49), 11847-11854 (2002).
    5. A. Kumar and P. D. Naik, Chemical Physics Letters 422 (1-3), 152-159 (2006).
    6. J. Li, F. Zhang and W. H. Fang, Journal of Physical Chemistry A 109 (34), 7718-7724 (2005).
    7. Q. Wei, J.-L. Sun, X.-F. Yue, S.-B. Cheng, C.-H. Zhou, H.-M. Yin and K.-L. Han, Journal of Physical Chemistry A 112 (21), 4727-4731 (2008).
    8. S. T. Tsai, C. L. Huang, Y. T. Lee and C. K. Ni, Journal of Chemical Physics 115 (6), 2449-2455 (2001).
    9. S. T. Tsai, C. K. Lin, Y. T. Lee and C. K. Ni, Journal of Chemical Physics 113 (1), 67-70 (2000).

    chaper 4.
    1. C. L. Wilson, J. M. Solar, A. El Ghaouth and D. R. Fravel, Hortscience 34 (4), 681-685 (1999).
    2. V. A. Isidorov, I. G. Zenkevich and B. V. Ioffe, J. Atmos. Chem. 10 (3), 329-340 (1990).
    3. J. Kesselmeier, U. Kuhn, S. Rottenberger, T. Biesenthal, A. Wolf, G. Schebeske, M. O. Andreae, P. Ciccioli, E. Brancaleoni, M. Frattoni, S. T. Oliva, M. L. Botelho, C. M. A. Silva and T. M. Tavares, J. Geophys. Res.-Atmos. 107 (D20) (2002).
    4. S. D. Piccot, J. J. Watson and J. W. Jones, J. Geophys. Res.-Atmos. 97 (D9), 9897-9912 (1992).
    5. R. Westerholm, J. Almen, H. Li, U. Rannug and A. Rosen, Atmospheric Environment Part B-Urban Atmosphere 26 (1), 79-90 (1992).
    6. W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass and B. R. T. Simoneit, Environ. Sci. Technol. 27 (4), 636-651 (1993).
    7. S. N. Dubtsov, G. G. Dultseva, E. N. Dultsev and G. I. Skubnevskaya, Journal of Physical Chemistry B 110 (1), 645-649 (2006).
    8. F. Caralp, V. Foucher, R. Lesclaux, T. J. Wallington and M. D. Hurley, Physical Chemistry Chemical Physics 1 (15), 3509-3517 (1999).
    9. J. Smolarek, R. Zwarich and L. Goodman, Journal of Molecular Spectroscopy 43 (3), 416-& (1972).
    10. D. G. Leopold, R. J. Hemley, V. Vaida and J. L. Roebber, Journal of Chemical Physics 75 (10), 4758-4769 (1981).
    11. K. Kimura and S. Nagakura, Theoretica Chimica Acta 3 (2), 164-& (1965).
    12. H. Abe, S. Kamei, N. Mikami and M. Ito, Chemical Physics Letters 109 (3), 217-220 (1984).
    13. C. R. Silva and J. P. Reilly, Journal of Physical Chemistry 100 (43), 17111-17123 (1996).
    14. V. Molina and M. Merchan, Journal of Physical Chemistry A 105 (15), 3745-3751 (2001).
    15. E. Villa, A. Amirav, W. Chen and E. C. Lim, Chemical Physics Letters 147 (1), 43-48 (1988).
    16. O. Sneh and O. Cheshnovsky, Journal of Physical Chemistry 95 (19), 7154-7164 (1991).
    17. N. Ohmori, T. Suzuki and M. Ito, Journal of Physical Chemistry 92 (5), 1086-1093 (1988).
    18. M. Berger, Goldblat.Il and C. Steel, Journal of the American Chemical Society 95 (6), 1717-1725 (1973).
    19. J. M. Hollas and S. N. Thakur, Chemical Physics 1 (4), 385-391 (1973).
    20. T. Itoh, Chemical Physics Letters 151 (1-2), 166-168 (1988).
    21. U. Bruhlmann and J. R. Huber, Chemical Physics Letters 66 (2), 353-357 (1979).
    22. T. Itoh, T. Takemura and H. Baba, Chemical Physics Letters 40 (3), 481-483 (1976).
    23. T. Itoh, Chemical Physics Letters 133 (3), 254-258 (1987).
    24. Y. Hirata and E. C. Lim, Chemical Physics Letters 71 (1), 167-170 (1980).
    25. U. Bruhlmann, M. Nonella, P. Russegger and J. R. Huber, Chemical Physics 81 (3), 439-447 (1983).
    26. M. B. Robin and N. A. Kuebler, Journal of the American Chemical Society 97 (17), 4822-4825 (1975).
    27. J. J. Yang, D. A. Gobell, R. S. Pandolfl and M. A. Elsayed, Journal of Physical Chemistry 87 (12), 2255-2260 (1983).
    28. J. J. Yang, D. A. Gobeli and M. A. Elsayed, Journal of Physical Chemistry 89 (15), 3426-3429 (1985).
    29. S. R. Long, J. T. Meek, P. J. Harrington and J. P. Reilly, Journal of Chemical Physics 78 (6), 3341-3343 (1983).
    30. C. R. Silva and J. P. Reilly, Journal of Physical Chemistry A 101 (43), 7934-7942 (1997).
    31. L. Zhu and T. J. Cronin, Chemical Physics Letters 317 (3-5), 227-231 (2000).
    32. S. T. Park, J. S. Feenstra and A. H. Zewail, Journal of Chemical Physics 124 (17) (2006).
    33. C. T. Lee, W. T. Yang and R. G. Parr, Physical Review B 37 (2), 785-789 (1988).
    34. A. D. Becke, Journal of Chemical Physics 98 (7), 5648-5652 (1993).
    35. A. D. Becke, Journal of Chemical Physics 97 (12), 9173-9177 (1992).
    36. A. D. Becke, Journal of Chemical Physics 96 (3), 2155-2160 (1992).
    37. G. E. Scuseria and H. F. Schaefer, Journal of Chemical Physics 90 (7), 3700-3703 (1989).
    38. J. A. Pople, M. Headgordon and K. Raghavachari, Journal of Chemical Physics 87 (10), 5968-5975 (1987).
    39. S. J. W. Klippenstein, A. F.; Dunbar, R. C.; Wardlaw, D. M.; Robertson, S. H. , VARIFLEX Version 1.00 (1999).
    40. D. M. Wardlaw and R. A. Marcus, Journal of Chemical Physics 83 (7), 3462-3480 (1985).
    41. D. M. Wardlaw and R. A. Marcus, Chemical Physics Letters 110 (3), 230-234 (1984).
    42. S. J. Klippenstein and R. A. Marcus, Journal of Chemical Physics 87 (6), 3410-3417 (1987).
    43. S. J. Klippenstein, Journal of Chemical Physics 96 (1), 367-371 (1992)

    chaper 5.
    1. J. Krause, M. Stoeckli and U. P. Schlunegger, Rapid Communications in Mass Spectrometry 10 (15), 1927-1933 (1996).
    2. W. C. Chang, L. C. L. Huang, Y.-S. Wang, W.-P. Peng, H. C. Chang, N. Y. Hsu, W. B. Yang and C. H. Chen, Analytica Chimica Acta 582 (1), 1-9 (2007).
    3. H. Ehring, M. Karas and F. Hillenkamp, Organic Mass Spectrometry 27 (4), 472-480 (1992).
    4. M. Karas and R. Kruger, Chemical Reviews 103 (2), 427-439 (2003).
    5. Y. Morisawa, Y. A. Dyakov, C.-M. Tseng, Y. T. Lee and C.-K. Ni, Journal of Physical Chemistry A 113 (1), 97-102 (2009).

    chaper 6.
    1. K. Dreisewerd, M. Schurenberg, M. Karas and F. Hillenkamp, International Journal of Mass Spectrometry 141 (2), 127-148 (1995).
    2. L. Jessome, N.-Y. Hsu, Y.-S. Wang and C.-H. Chen, Rapid Communications in Mass Spectrometry 22 (2), 130-134 (2008).
    3. M. Karas and R. Kruger, Chemical Reviews 103 (2), 427-439 (2003).
    4. J. Krause, M. Stoeckli and U. P. Schlunegger, Rapid Communications in Mass Spectrometry 10 (15), 1927-1933 (1996).
    5. P. C. Liao and J. Allison, Journal of Mass Spectrometry 30 (3), 408-423 (1995).
    6. B.-H. Liu, Y. T. Lee and Y.-S. Wang, Journal of the American Society for Mass Spectrometry 20 (6), 1078-1086 (2009).
    7. M. Mank, B. Stahl and G. Boehm, Analytical Chemistry 76 (10), 2938- 2950 (2004).
    8. K. Tang, S. L. Allman and C. H. Chen, Rapid Communications in Mass Spectrometry 7 (10), 943-948 (1993).
    9. R. Zenobi and R. Knochenmuss, Mass Spectrometry Reviews 17 (5), 337- 366 (1998).
    10. C. K. Ni and Y. T. Lee, International Reviews in Physical Chemistry 23 (2), 187-218 (2004).
    11. R. J. Lipert and S. D. Colson, Journal of Chemical Physics 92 (5), 3240- 3241 (1990).
    12. A. Oikawa, H. Abe, N. Mikami and M. Ito, Chemical Physics Letters 116 (1), 50-54 (1985).
    13. M. H. Palmer, W. Moyes, M. Speirs and J. N. A. Ridyard, Journal of Molecular Structure 52 (2), 293-307 (1979).
    14. L. Klasinc, B. Kovac and H. Gusten, Pure and Applied Chemistry 55 (2), 289-298 (1983).
    15. F. Benoit, Organic Mass Spectrometry 7 (3), 295-303 (1973).
    16. Y. A. Dyakov, S.-T. Tsai, A. Bagchi, C.-M. Tseng, Y. T. Lee and C.-K. Ni, Journal of Physical Chemistry A 113 (52), 14987-14994 (2009).
    17. C. M. Tseng, Y. T. Lee and C. K. Ni, Journal of Chemical Physics 121 (6), 2459-2461 (2004).
    18. C.-M. Tseng, Y. T. Lee, M.-F. Lin, C.-K. Ni, S.-Y. Liu, Y.-P. Lee, Z. F. Xu and M. C. Lin, Journal of Physical Chemistry A 111 (38), 9463-9470 (2007).
    19. Y. A. Dyakov, A. Bagchi, Y. T. Lee and C.-K. Ni, Journal of Chemical Physics 132 (1) (2010).
    20. Y. L. Yang, Y. Dyakov, Y. T. Lee, C.-K. Ni, Y.-L. Sun and W.-P. Hu, Journal of Chemical Physics 134 (3) (2011).

    chaper 7.
    1. G. Montaudo, M. S. Montaudo, C. Puglisi and F. Samperi, Macromolecules 28 (13), 4562-4569 (1995).
    2. C. Ranasinghe and R. J. Akhurst, Journal of Invertebrate Pathology 79 (1), 51-58 (2002).
    3. W. Tang, C. M. Nelson, L. Zhu and L. M. Smith, Journal of the American Society for Mass Spectrometry 8 (3), 218-224 (1997).
    4. S. Berkenkamp, F. Kirpekar and F. Hillenkamp, Science 281 (5374), 260-262 (1998).
    5. M. Karas and F. Hillenkamp, Analytical Chemistry 60 (20), 2299-2301 (1988).
    6. M. Karas, D. Bachmann, U. Bahr and F. Hillenkamp, International Journal of Mass Spectrometry and Ion Processes 78, 53-68 (1987).
    7. M. Karas, U. Bahr, K. Strupat, F. Hillenkamp, A. Tsarbopoulos and B. N. Pramanik, Analytical Chemistry 67 (3), 675-679 (1995).
    8. T. W. Jaskolla, M. Karas, U. Roth, K. Steinert, C. Menzel and K. Reihs, Journal of the American Society for Mass Spectrometry 20 (6), 1104-1114 (2009).
    9. R. W. Garden and J. V. Sweedler, Analytical Chemistry 72 (1), 30-36 (2000).
    10. H. Qiao, G. Piyadasa, V. Spicer and W. Ens, International Journal of Mass Spectrometry 281 (1-2), 41-51 (2009).
    11. T. Kinumi, T. Saisu, M. Takayama and H. Niwa, Journal of Mass Spectrometry 35 (3), 417-422 (2000).
    12. D. S. Cornett, M. A. Duncan and I. J. Amster, Analytical Chemistry 65 (19), 2608-2613 (1993).
    13. H. Ehring, M. Karas and F. Hillenkamp, Organic Mass Spectrometry 27 (4), 472-480 (1992).
    14. M. Karas and R. Kruger, Chemical Reviews 103 (2), 427-439 (2003).
    15. R. Knochenmuss, A. Stortelder, K. Breuker and R. Zenobi, Journal of Mass Spectrometry 35 (11), 1237-1245 (2000).
    16. R. Knochenmuss, Journal of Mass Spectrometry 37 (8), 867-877 (2002).
    17. R. Knochenmuss, Analytical Chemistry 75 (10), 2199-2207 (2003).
    18. G. R. Kinsel, D. Yao, F. H. Yassin and D. S. Marynick, European Journal of Mass Spectrometry 12 (6), 359-367 (2006).
    19. K. M. Park, Y. J. Bae, S. H. Ahn and M. S. Kim, Analytical Chemistry 84 (23), 10332-10337 (2012).
    20. D. A. Allwood, R. W. Dreyfus, I. K. Perera and P. E. Dyer, Rapid Communications in Mass Spectrometry 10 (13), 1575-1578 (1996).
    21. N. D. Padliya and T. D. Wood, Analytica Chimica Acta 627 (1), 162-168 (2008).
    22. C. W. Liang, C. H. Lee, Y. J. Lin, Y. T. Lee and C. K. Ni, Journal of Physical Chemistry B 117 (17), 5058-5064 (2013)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE