研究生: |
貝格奇 Arnab Bagchi |
---|---|
論文名稱: |
芳香族分子在分子束中及在基質輔助雷射脫附游離過程中的光誘發反應 Photo-induced reactions of aromatics in molecular beam and during MALDI process |
指導教授: |
倪其焜
Ni, Chi-Kung |
口試委員: |
高橋開人
Kaito Takahashi 李遠哲 Lee, Yuan-Tseh 林金全 Lin, King- Chuen 曾文碧 Tzeng, Wen-Bih 林志民 Lin, Jim Jr-Min |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 120 |
中文關鍵詞: | Photodissociation Dynamics 、Molecular Beam 、Two-step Laser Desorption/Ionization mass spectrometry 、VUV photoionization 、MALDI |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The first part of this thesis features photodissociation dynamics experiments performed on a choice of molecular systems using multimass ion imaging technique. The desired system was placed at collisionless environment in molecular beam and was expanded inside a vacuum chamber. Photoionization and photodissociation of molecules in the molecular beam were accomplished by excitation with a UV laser beam. The excited photo-fragments were subsequently ionized by vacuum ultraviolet (VUV, 118 nm) laser pulse at a certain delay time. The primary photodissociation and photoionization along with its dynamics in the gas phase have been studied for diverse aromatic molecules at different UV photolysis wavelengths. The unique features of multimass ion imaging technique reveal primary photodissociation channels like –CO2 and –COOH elimination in addition to the usually observed –OH dissociation by other experimental techniques for the aromatic molecule benzoic acid. Studies of photodissociation dynamics for another interesting aromatic compound benzaldehyde indicate at least four processes including –CO and –COH dissociation channels upon UV excitation by various photon energies on benzaldehyde molecular beam. Photodissociation and photoionization of potential MALDI matrix molecules like 2,5-Dihydroxy benzoic acid (2,5-DHB) and 2,5-Dihydroxyacetophenone (2,5-DHAP) expose their photochemistry in gas phase after being excited by UV photon and also acquaint with photon number dependences for the observed photofragments when studied by means of multi-photon ionization. At 355 nm photolysis wavelength 2,5-DHB molecule display H2O elimination as a major dissociation channel from the electronic ground state. For both the MALDI matrix molecules an estimated concentration of neutral fragments outnumbers the ionic fragments by 105-106 to one, when studied at 355 nm photolysis wavelength in molecular beam environment. Multiphoton ionization of matrix clusters generated in molecular beam environment do not show any protonated or negatively charged ions as usually observed in solid state MALDI. The observations indicate protonation or deprotonation reactions usually observed in solid state MALDI experiment must involve some complicated reactions; whereas any possible photoionization processes occurring in the gas phase after the matrix molecules vaporize from the condensed phase, does not seem to play an important role during MALDI process.
The second part of the thesis involves a study of condensed phase to gas phase desorption-ionization process using two-step laser desorption/ionization mass spectrometry. Here a second VUV (118 nm) laser pulse is interrogated to post-ionize the neutral species in desorption plume after they primarily get desorbed into gas phase by initial UV laser pulse. A direct correlation between the instantaneously formed ions generated by initial UV laser pulse and the post-ionized neutral molecules have been performed with an anticipation to characterize overall desorption event by decoupling desorption and ionization processes. Two of the most widely used MALDI matrix compounds 2,5-DHB and α-Cyano-4-hydroxycinnamic acid (CHCA) have been chosen as molecular systems. A better signal correlation between the directly formed ions and post-ionized neutrals have been observed for the matrix molecule CHCA unlike 2,5-DHB. The desorption and ionization events for pure matrix molecules have been studied to address some of the silent features in MALDI and throw light for better understanding of the fundamental material ejection in conventional UV-MALDI phenomenon. The objective of this particular experimental purpose is an attempt towards an improved quantitative analytical applications using MALDI mass spectrometry through a perception of the underlying basic mechanism for matrix-assisted laser desorption/ionization phenomenon.
References:
chaper 1.
1. A. J. Demaria and C. J. Ultee, Applied Physics Letters 9 (1), 67-& (1966).
2. R. Kissner, T. Nauser, P. Bugnon, P. G. Lye and W. H. Koppenol, Chemical Research in Toxicology 10 (11), 1285-1292 (1997).
3. C. E. Otis, J. L. Knee and P. M. Johnson, J. Chem. Phys. 78, 2091 (1983).
4. S. A. Lee, Journal of Chemical Physics 68 (2), 602-607 (1978).
5. M. A. Duncan, T. G. Dietz, M. O. Liverman and R. E. Smalley, J. Phys. Chem. 85, 7-9 (1981).
6. N. Nakashima and K. Yoshihara, Journal of Chemical Physics 77 (12), 6040-6050 (1982).
7. M. Sumitani, D. V. Oconnor, Y. Takagi, N. Nakashima, K. Kamogawa, Y. Udagawa and K. Yoshihara, Chemical Physics 93 (3), 359-371 (1985).
8. A. M. Wodtke and Y. T. Lee, High resolution photofragment translational spectroscopy (Royal Society of Chemistry, London, 1987).
9. D. W. Chandler and P. L. Houston, Journal of Chemical Physics 87 (2), 1445-1447 (1987).
10. A. Eppink and D. H. Parker, Review of Scientific Instruments 68 (9), 3477-3484 (1997).
11. M. Mons and I. Dimicoli, Chemical Physics Letters 131 (4-5), 298-302 (1986).
12. S. T. Tsai, C. K. Lin, Y. T. Lee and C. K. Ni, Review of Scientific Instruments 72 (4), 1963-1969 (2001).
13. C. L. Huang, Y.-T. Lee and C.-K. Ni, in Modern Trends in Chemical Reaction Dynamics: Experiment and Theory (Part II) edited by X. Y. K. Liu(World Scientific Publisher 2004), pp. 163-213.
14. F. Hillenkamp and M. Karas, Methods in Enzymology 193, 280-295 (1990).
15. K. Tanaka, Angewandte Chemie-International Edition 42 (33), 3860-3870 (2003).
16. M. Karas, D. Bachmann, U. Bahr and F. Hillenkamp, International Journal of Mass Spectrometry and Ion Processes 78, 53-68 (1987).
17. M. Karas, D. Bachmann and F. Hillenkamp, Analytical Chemistry 57 (14), 2935- 2939 (1985).
18. M. Karas, U. Bahr, K. Strupat, F. Hillenkamp, A. Tsarbopoulos and B. N. Pramanik, Analytical Chemistry 67 (3), 675-679 (1995).
19. J. Krause, M. Stoeckli and U. P. Schlunegger, Rapid Communications in Mass Spectrometry 10 (15), 1927-1933 (1996).
20. T. W. Jaskolla, M. Karas, U. Roth, K. Steinert, C. Menzel and K. Reihs, Journal of the American Society for Mass Spectrometry 20 (6), 1104-1114 (2009).
21. K. Tang, S. L. Allman, R. B. Jones and C. H. Chen, Analytical Chemistry 65 (15), 2164-2166 (1993).
22. H. Ehring, M. Karas and F. Hillenkamp, Organic Mass Spectrometry 27 (4), 472- 480 (1992).
23. M. Karas, M. Gluckmann and J. Schafer, Journal of Mass Spectrometry 35 (1), 1-12 (2000).
24. M. Karas and R. Kruger, Chemical Reviews 103 (2), 427-439 (2003).
25. R. Knochenmuss, Journal of Mass Spectrometry 37 (8), 867-877 (2002).
26. R. Zenobi and R. Knochenmuss, Mass Spectrometry Reviews 17 (5), 337- 366 (1998).
chaper 2.
1. C. L. Huang, Y.-T. Lee and C.-K. Ni, in Modern Trends in Chemical Reaction Dynamics: Experiment and Theory (Part II), edited by X. Yang and K. Liu (World Scientific Publisher 2004), pp. 163-213.
2. C. K. Ni and Y. T. Lee, International Reviews in Physical Chemistry 23 (2), 187-218 (2004).
3. S. T. Tsai, C. K. Lin, Y. T. Lee and C. K. Ni, Review of Scientific Instruments 72 (4), 1963-1969 (2001).
4. Y. Morisawa, Y. A. Dyakov, C.-M. Tseng, Y. T. Lee and C.-K. Ni, Journal of Physical Chemistry A 113 (1), 97-102 (2009).
chaper 3.
1. S. Dhanya, D. K. Maity, H. P. Upadhyaya, A. Kumar, P. D. Naik and R. D. Saini, Journal of Chemical Physics 118 (22), 10093-10100 (2003).
2. K. K. Pushpa, H. P. Upadhyaya, A. Kumar, P. D. Naik, P. Bajaj and J. P. Mittal, Journal of Chemical Physics 120 (15), 6964-6972 (2004).
3. H. P. Upadhyaya, A. Kumar, P. D. Naik, A. V. Sapre and J. P. Mittal, Journal of Chemical Physics 117 (22), 10097-10103 (2002).
4. A. Kumar, H. P. Upadhyaya, P. D. Naik, D. K. Maity and J. P. Mittal, Journal of Physical Chemistry A 106 (49), 11847-11854 (2002).
5. A. Kumar and P. D. Naik, Chemical Physics Letters 422 (1-3), 152-159 (2006).
6. J. Li, F. Zhang and W. H. Fang, Journal of Physical Chemistry A 109 (34), 7718-7724 (2005).
7. Q. Wei, J.-L. Sun, X.-F. Yue, S.-B. Cheng, C.-H. Zhou, H.-M. Yin and K.-L. Han, Journal of Physical Chemistry A 112 (21), 4727-4731 (2008).
8. S. T. Tsai, C. L. Huang, Y. T. Lee and C. K. Ni, Journal of Chemical Physics 115 (6), 2449-2455 (2001).
9. S. T. Tsai, C. K. Lin, Y. T. Lee and C. K. Ni, Journal of Chemical Physics 113 (1), 67-70 (2000).
chaper 4.
1. C. L. Wilson, J. M. Solar, A. El Ghaouth and D. R. Fravel, Hortscience 34 (4), 681-685 (1999).
2. V. A. Isidorov, I. G. Zenkevich and B. V. Ioffe, J. Atmos. Chem. 10 (3), 329-340 (1990).
3. J. Kesselmeier, U. Kuhn, S. Rottenberger, T. Biesenthal, A. Wolf, G. Schebeske, M. O. Andreae, P. Ciccioli, E. Brancaleoni, M. Frattoni, S. T. Oliva, M. L. Botelho, C. M. A. Silva and T. M. Tavares, J. Geophys. Res.-Atmos. 107 (D20) (2002).
4. S. D. Piccot, J. J. Watson and J. W. Jones, J. Geophys. Res.-Atmos. 97 (D9), 9897-9912 (1992).
5. R. Westerholm, J. Almen, H. Li, U. Rannug and A. Rosen, Atmospheric Environment Part B-Urban Atmosphere 26 (1), 79-90 (1992).
6. W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass and B. R. T. Simoneit, Environ. Sci. Technol. 27 (4), 636-651 (1993).
7. S. N. Dubtsov, G. G. Dultseva, E. N. Dultsev and G. I. Skubnevskaya, Journal of Physical Chemistry B 110 (1), 645-649 (2006).
8. F. Caralp, V. Foucher, R. Lesclaux, T. J. Wallington and M. D. Hurley, Physical Chemistry Chemical Physics 1 (15), 3509-3517 (1999).
9. J. Smolarek, R. Zwarich and L. Goodman, Journal of Molecular Spectroscopy 43 (3), 416-& (1972).
10. D. G. Leopold, R. J. Hemley, V. Vaida and J. L. Roebber, Journal of Chemical Physics 75 (10), 4758-4769 (1981).
11. K. Kimura and S. Nagakura, Theoretica Chimica Acta 3 (2), 164-& (1965).
12. H. Abe, S. Kamei, N. Mikami and M. Ito, Chemical Physics Letters 109 (3), 217-220 (1984).
13. C. R. Silva and J. P. Reilly, Journal of Physical Chemistry 100 (43), 17111-17123 (1996).
14. V. Molina and M. Merchan, Journal of Physical Chemistry A 105 (15), 3745-3751 (2001).
15. E. Villa, A. Amirav, W. Chen and E. C. Lim, Chemical Physics Letters 147 (1), 43-48 (1988).
16. O. Sneh and O. Cheshnovsky, Journal of Physical Chemistry 95 (19), 7154-7164 (1991).
17. N. Ohmori, T. Suzuki and M. Ito, Journal of Physical Chemistry 92 (5), 1086-1093 (1988).
18. M. Berger, Goldblat.Il and C. Steel, Journal of the American Chemical Society 95 (6), 1717-1725 (1973).
19. J. M. Hollas and S. N. Thakur, Chemical Physics 1 (4), 385-391 (1973).
20. T. Itoh, Chemical Physics Letters 151 (1-2), 166-168 (1988).
21. U. Bruhlmann and J. R. Huber, Chemical Physics Letters 66 (2), 353-357 (1979).
22. T. Itoh, T. Takemura and H. Baba, Chemical Physics Letters 40 (3), 481-483 (1976).
23. T. Itoh, Chemical Physics Letters 133 (3), 254-258 (1987).
24. Y. Hirata and E. C. Lim, Chemical Physics Letters 71 (1), 167-170 (1980).
25. U. Bruhlmann, M. Nonella, P. Russegger and J. R. Huber, Chemical Physics 81 (3), 439-447 (1983).
26. M. B. Robin and N. A. Kuebler, Journal of the American Chemical Society 97 (17), 4822-4825 (1975).
27. J. J. Yang, D. A. Gobell, R. S. Pandolfl and M. A. Elsayed, Journal of Physical Chemistry 87 (12), 2255-2260 (1983).
28. J. J. Yang, D. A. Gobeli and M. A. Elsayed, Journal of Physical Chemistry 89 (15), 3426-3429 (1985).
29. S. R. Long, J. T. Meek, P. J. Harrington and J. P. Reilly, Journal of Chemical Physics 78 (6), 3341-3343 (1983).
30. C. R. Silva and J. P. Reilly, Journal of Physical Chemistry A 101 (43), 7934-7942 (1997).
31. L. Zhu and T. J. Cronin, Chemical Physics Letters 317 (3-5), 227-231 (2000).
32. S. T. Park, J. S. Feenstra and A. H. Zewail, Journal of Chemical Physics 124 (17) (2006).
33. C. T. Lee, W. T. Yang and R. G. Parr, Physical Review B 37 (2), 785-789 (1988).
34. A. D. Becke, Journal of Chemical Physics 98 (7), 5648-5652 (1993).
35. A. D. Becke, Journal of Chemical Physics 97 (12), 9173-9177 (1992).
36. A. D. Becke, Journal of Chemical Physics 96 (3), 2155-2160 (1992).
37. G. E. Scuseria and H. F. Schaefer, Journal of Chemical Physics 90 (7), 3700-3703 (1989).
38. J. A. Pople, M. Headgordon and K. Raghavachari, Journal of Chemical Physics 87 (10), 5968-5975 (1987).
39. S. J. W. Klippenstein, A. F.; Dunbar, R. C.; Wardlaw, D. M.; Robertson, S. H. , VARIFLEX Version 1.00 (1999).
40. D. M. Wardlaw and R. A. Marcus, Journal of Chemical Physics 83 (7), 3462-3480 (1985).
41. D. M. Wardlaw and R. A. Marcus, Chemical Physics Letters 110 (3), 230-234 (1984).
42. S. J. Klippenstein and R. A. Marcus, Journal of Chemical Physics 87 (6), 3410-3417 (1987).
43. S. J. Klippenstein, Journal of Chemical Physics 96 (1), 367-371 (1992)
chaper 5.
1. J. Krause, M. Stoeckli and U. P. Schlunegger, Rapid Communications in Mass Spectrometry 10 (15), 1927-1933 (1996).
2. W. C. Chang, L. C. L. Huang, Y.-S. Wang, W.-P. Peng, H. C. Chang, N. Y. Hsu, W. B. Yang and C. H. Chen, Analytica Chimica Acta 582 (1), 1-9 (2007).
3. H. Ehring, M. Karas and F. Hillenkamp, Organic Mass Spectrometry 27 (4), 472-480 (1992).
4. M. Karas and R. Kruger, Chemical Reviews 103 (2), 427-439 (2003).
5. Y. Morisawa, Y. A. Dyakov, C.-M. Tseng, Y. T. Lee and C.-K. Ni, Journal of Physical Chemistry A 113 (1), 97-102 (2009).
chaper 6.
1. K. Dreisewerd, M. Schurenberg, M. Karas and F. Hillenkamp, International Journal of Mass Spectrometry 141 (2), 127-148 (1995).
2. L. Jessome, N.-Y. Hsu, Y.-S. Wang and C.-H. Chen, Rapid Communications in Mass Spectrometry 22 (2), 130-134 (2008).
3. M. Karas and R. Kruger, Chemical Reviews 103 (2), 427-439 (2003).
4. J. Krause, M. Stoeckli and U. P. Schlunegger, Rapid Communications in Mass Spectrometry 10 (15), 1927-1933 (1996).
5. P. C. Liao and J. Allison, Journal of Mass Spectrometry 30 (3), 408-423 (1995).
6. B.-H. Liu, Y. T. Lee and Y.-S. Wang, Journal of the American Society for Mass Spectrometry 20 (6), 1078-1086 (2009).
7. M. Mank, B. Stahl and G. Boehm, Analytical Chemistry 76 (10), 2938- 2950 (2004).
8. K. Tang, S. L. Allman and C. H. Chen, Rapid Communications in Mass Spectrometry 7 (10), 943-948 (1993).
9. R. Zenobi and R. Knochenmuss, Mass Spectrometry Reviews 17 (5), 337- 366 (1998).
10. C. K. Ni and Y. T. Lee, International Reviews in Physical Chemistry 23 (2), 187-218 (2004).
11. R. J. Lipert and S. D. Colson, Journal of Chemical Physics 92 (5), 3240- 3241 (1990).
12. A. Oikawa, H. Abe, N. Mikami and M. Ito, Chemical Physics Letters 116 (1), 50-54 (1985).
13. M. H. Palmer, W. Moyes, M. Speirs and J. N. A. Ridyard, Journal of Molecular Structure 52 (2), 293-307 (1979).
14. L. Klasinc, B. Kovac and H. Gusten, Pure and Applied Chemistry 55 (2), 289-298 (1983).
15. F. Benoit, Organic Mass Spectrometry 7 (3), 295-303 (1973).
16. Y. A. Dyakov, S.-T. Tsai, A. Bagchi, C.-M. Tseng, Y. T. Lee and C.-K. Ni, Journal of Physical Chemistry A 113 (52), 14987-14994 (2009).
17. C. M. Tseng, Y. T. Lee and C. K. Ni, Journal of Chemical Physics 121 (6), 2459-2461 (2004).
18. C.-M. Tseng, Y. T. Lee, M.-F. Lin, C.-K. Ni, S.-Y. Liu, Y.-P. Lee, Z. F. Xu and M. C. Lin, Journal of Physical Chemistry A 111 (38), 9463-9470 (2007).
19. Y. A. Dyakov, A. Bagchi, Y. T. Lee and C.-K. Ni, Journal of Chemical Physics 132 (1) (2010).
20. Y. L. Yang, Y. Dyakov, Y. T. Lee, C.-K. Ni, Y.-L. Sun and W.-P. Hu, Journal of Chemical Physics 134 (3) (2011).
chaper 7.
1. G. Montaudo, M. S. Montaudo, C. Puglisi and F. Samperi, Macromolecules 28 (13), 4562-4569 (1995).
2. C. Ranasinghe and R. J. Akhurst, Journal of Invertebrate Pathology 79 (1), 51-58 (2002).
3. W. Tang, C. M. Nelson, L. Zhu and L. M. Smith, Journal of the American Society for Mass Spectrometry 8 (3), 218-224 (1997).
4. S. Berkenkamp, F. Kirpekar and F. Hillenkamp, Science 281 (5374), 260-262 (1998).
5. M. Karas and F. Hillenkamp, Analytical Chemistry 60 (20), 2299-2301 (1988).
6. M. Karas, D. Bachmann, U. Bahr and F. Hillenkamp, International Journal of Mass Spectrometry and Ion Processes 78, 53-68 (1987).
7. M. Karas, U. Bahr, K. Strupat, F. Hillenkamp, A. Tsarbopoulos and B. N. Pramanik, Analytical Chemistry 67 (3), 675-679 (1995).
8. T. W. Jaskolla, M. Karas, U. Roth, K. Steinert, C. Menzel and K. Reihs, Journal of the American Society for Mass Spectrometry 20 (6), 1104-1114 (2009).
9. R. W. Garden and J. V. Sweedler, Analytical Chemistry 72 (1), 30-36 (2000).
10. H. Qiao, G. Piyadasa, V. Spicer and W. Ens, International Journal of Mass Spectrometry 281 (1-2), 41-51 (2009).
11. T. Kinumi, T. Saisu, M. Takayama and H. Niwa, Journal of Mass Spectrometry 35 (3), 417-422 (2000).
12. D. S. Cornett, M. A. Duncan and I. J. Amster, Analytical Chemistry 65 (19), 2608-2613 (1993).
13. H. Ehring, M. Karas and F. Hillenkamp, Organic Mass Spectrometry 27 (4), 472-480 (1992).
14. M. Karas and R. Kruger, Chemical Reviews 103 (2), 427-439 (2003).
15. R. Knochenmuss, A. Stortelder, K. Breuker and R. Zenobi, Journal of Mass Spectrometry 35 (11), 1237-1245 (2000).
16. R. Knochenmuss, Journal of Mass Spectrometry 37 (8), 867-877 (2002).
17. R. Knochenmuss, Analytical Chemistry 75 (10), 2199-2207 (2003).
18. G. R. Kinsel, D. Yao, F. H. Yassin and D. S. Marynick, European Journal of Mass Spectrometry 12 (6), 359-367 (2006).
19. K. M. Park, Y. J. Bae, S. H. Ahn and M. S. Kim, Analytical Chemistry 84 (23), 10332-10337 (2012).
20. D. A. Allwood, R. W. Dreyfus, I. K. Perera and P. E. Dyer, Rapid Communications in Mass Spectrometry 10 (13), 1575-1578 (1996).
21. N. D. Padliya and T. D. Wood, Analytica Chimica Acta 627 (1), 162-168 (2008).
22. C. W. Liang, C. H. Lee, Y. J. Lin, Y. T. Lee and C. K. Ni, Journal of Physical Chemistry B 117 (17), 5058-5064 (2013)