研究生: |
鍾紫宣 Chung, Tzu-Hsuan |
---|---|
論文名稱: |
可控結合生物素探針於細胞成像及酵素催化螢光增益的應用 Enzyme-Catalyzed Fluorescence Signal Amplification and Cell-Imaging with Streptavidin-Biotin Controlled Binding Probe |
指導教授: |
陳貴通
Tan, Kui-Thong |
口試委員: |
黃郁棻
Huang, Yu-Fen 許馨云 Hsu, Hsin-Yun |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 生物素探針 、鏈黴親合素 、螢光 、訊號增益 、酵素 、過氧化亞硝酸鹽 |
外文關鍵詞: | caged-biotin-probe, streptavidin, fluorescence, signal amplification, enzyme, peroxynitrite |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來發展出一種新型的籠閉生物素螢光探針模型(Caged-Biotin Probe, CBP),利用鏈黴親和素蛋白與生物素間強勁的結合力(K⁓1015),探針能夠在偵測到目標物時進行結構轉換,解除籠閉狀態的生物素即可與鏈黴親和素蛋白進行結合,具備快速專一且無背景訊號的特色,突破以往螢光探針易受背景干擾、單一訊號模式的限制,揭開新型螢光探針的序幕。
銜接本實驗室設計的反應型籠閉生物素探針模型,我們合成出兩種新型的CBP (CBP-BA, CBP-N3),兩者皆具備了簡易合成步驟、低背景、高螢光增益性等優點。我們將兩種探針進行不同的實驗研究。將CBP-BA進行細胞實驗的探討,不僅成功地偵測到內源性的過氧亞硝酸酶(peroxynitrite, ONOO),並且擁有極佳的穩定性及偵測極限。我們也利用細胞影像觀察巨噬細胞遭受細胞激素 (cytokine)時的反應,更深入了解這些物質對疾病影響的程度。另一方面,CBP-N3實驗了兩種螢光放大機制模式:1. 藉著streptavidin上多個螢光分子放出訊號,運用於細胞實驗。2. 藉著streptavidin上的酵素及其對應的受質產生螢光,運用於孔盤實驗。孔盤實驗中,利用酵素催化可持續增益螢光訊號,提供了更可觀的螢光增益性質,具備了更優越的偵測極限。我們相信結合上述兩種探針的優點,可將CBP運用於細胞及活體實驗,且高增益性質的酵素催化優勢,能夠使我們更顯而易見地檢測目標物的濃度變化。
Recently, many small molecule-based detection systems have been developed to sense enzyme activities and quantify small molecule concentration. In this thesis, a novel type of chemical probes—Target-Activated Streptavidin-Biotin Control Binding Probes (CBP) have been developed, which is based on the extremely high affinity between streptavidin and biotin. Incorporation of a functional group at the N’-1 urea nitrogen of biotin can dramatically reduce the streptavidin-binding affinity. This functional group can be designed by which target analytes will be detected. Streptavidin can be conjugated with multiple fluorophore units or enzymes to amplify fluorescence signals. Signal amplification can be achieved by the released fluorescence molecules after enzymatic reaction. Based on this approach, we applied the CBP concept not only on cell-imaging but also on enzyme-catalyzed fluorescence signal amplifications on maleimide-modified 96-well microplates. In the cell-imaging, the probe, CBP-BA, owns a very good sensitivity and selectivity toward peroxynitrite. We can utilize cell-imaging experiment of CBP-BA to study the biology about the inflammation of phagocyte. In the plate detection system, the detection limit of the probe, CBP-N3, in the concentration-dependent experiment has been improved by enzyme-catalyzed signal amplification. We believe that we have developed a versatile target detection method and have demonstrated the potential for diagnostic applications.
[1]Lobo, V.; Patil, A.; Phatak, A.; Chandra, N., Pharmacognosy Reviews 2010, 4, 118-126.
[2]Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M. T. D.; Mazur, M.; Telser, J., The International Journal of Biochemistry & Cell Biology 2007, 39, 44-84.
[3]Harman, D., Journal of Gerontology 1956, 11, 298-300.
[4]Pham-Huy, L. A.; He, H.; Pham-Huy, C., International Journal of Biomedical Science : IJBS 2008, 4, 89-96.
[5]Birben, E.; Sahiner, U. M.; Sackesen, C.; Erzurum, S.; Kalayci, O., The World Allergy Organization journal 2012, 5, 9-19.
[6]Phaniendra, A.; Jestadi, D. B.; Periyasamy, L., Indian J Clin Biochem 2015, 30, 11-26.
[7]Rodrı́guez, A. M.; Carrico, P. M.; Mazurkiewicz, J. E.; Meléndez, J. A., Free Radical Biology and Medicine 2000, 29, 801-813.
[8]Forney, L. J.; Reddy, C. A.; Tien, M.; Aust, S. D., Journal of Biological Chemistry 1982, 257, 11455-62.
[9]Stuehr, D. J.; Kwon, N. S.; Nathan, C. F.; Griffith, O. W.; Feldman, P. L.; Wiseman, J., Journal of Biological Chemistry 1991, 266, 6259-6263.
[10]Forstermann, U.; Sessa, W. C., European Heart Journal 2011, 33, 829-837.
[11]Cho, H. J., Journal of Experimental Medicine 1992, 176, 599-604.
[12]Schleicher, M.; Yu, J.; Murata, T.; Derakhshan, B.; Atochin, D.; Qian, L.; Kashiwagi, S.; Di Lorenzo, A.; Harrison, K. D.; Huang, P. L.; Sessa, W. C., Science Signaling 2009, 2, ra41-ra41.
[13]Fleming, I.; Fisslthaler, B.; Dimmeler, S.; Kemp, B. E.; Busse, R., Circulation Research 2001, 88, e68-e75.
[14]Carr, A. C.; McCall, M. R.; Frei, B., Reaction Pathways and Antioxidant Protection 2000, 20, 1716-1723.
[15]Szabó, C., Shock 1996, 6, 79-88.
[16]Muriel, P.; Sandoval, G., Nitric Oxide 2000, 4, 333-342.
[17]Zingarelli, B.; O'Connor, M.; Wong, H.; Salzman, A. L.; Szabó, C., The Journal of Immunology 1996, 156, 350-358.
[18]Beckman, J. S.; Beckman, T. W.; Chen, J.; Marshall, P. A.; Freeman, B. A., Proceedings of the National Academy of Sciences 1990, 87, 1620-1624.
[19]Pacher, P.; Beckman, J. S.; Liaudet, L., Physiological Reviews 2007, 87, 315-424.
[20]Szabó, C.; Ischiropoulos, H.; Radi, R., Nature Reviews Drug Discovery 2007, 6, 662.
[21]Radi, R.; Denicola, A.; Alvarez, B.; Ferrer-Sueta, G.; Rubbo, H., Chapter 4 - The Biological Chemistry of Peroxynitrite. In Nitric Oxide, Ignarro, L. J., Ed. Academic Press: San Diego, 2000; pp 57-82.
[22]Pacher, P.; Beckman, J. S.; Liaudet, L., Physiol. Rev. 2007, 87, 315-424.
[23]Goldstein, S.; Czapski, G., Free Radical Biology and Medicine 1995, 19, 505-510.
[24]Squadrito, G. L.; Pryor, W. A., Free Radical Biology and Medicine 1998, 25, 392-403.
[25]Buettner, G. R., Free Radical Biology and Medicine 1987, 3, 259-303.
[26]Weissleder, R.; Mahmood, U., Radiology 2001, 219, 316-333.
[27]Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y., Chemical Reviews 2010, 110, 2620-2640.
[28]台大醫院新聞稿. https://www.ntuh.gov.tw/information/Lists/latest_news/DispForm.aspx?ID=587&ContentTypeId=0x0100C86C9B4B29F0994FA174B22E789692F3.
[29]Gang, Q.; Yuan, W. Z., Chemistry – An Asian Journal 2010, 5, 1006-1029.
[30]Frangioni, J. V., Molecular Imaging 2009, 8, 7290.2009.00033.
[31]Urano, Y.; Kamiya, M.; Kanda, K.; Ueno, T.; Hirose, K.; Nagano, T., Journal of the American Chemical Society 2005, 127, 4888-4894.
[32]Karton-Lifshin, N.; Segal, E.; Omer, L.; Portnoy, M.; Satchi-Fainaro, R.; Shabat, D., Journal of the American Chemical Society 2011, 133, 10960-10965.
[33]Rosenthal, J.; Lippard, S. J., Journal of the American Chemical Society 2010, 132, 5536-5537.
[34]Royzen, M.; Wilson, J. J.; Lippard, S. J., Journal of Inorganic Biochemistry 2013, 118, 162-170.
[35]Kawai, K.; Ieda, N.; Aizawa, K.; Suzuki, T.; Miyata, N.; Nakagawa, H., Journal of the American Chemical Society 2013, 135, 12690-12696.
[36]Wu, D.; Ryu, J.-C.; Chung, Y. W.; Lee, D.; Ryu, J.-H.; Yoon, J.-H.; Yoon, J., Analytical Chemistry 2017, 89, 10924-10931.
[37]Gong, Y.-J.; Zhang, X.-B.; Mao, G.-J.; Su, L.; Meng, H.-M.; Tan, W.; Feng, S.; Zhang, G., Chemical Science 2016, 7, 2275-2285.
[38]Li, J.; Chen, L.; Du, L.; Li, M., Chemical Society Reviews 2013, 42, 662-676.
[39]Li, J.-B.; Chen, L.; Wang, Q.; Liu, H.-W.; Hu, X.-X.; Yuan, L.; Zhang, X.-B., Analytical Chemistry 2018, 90, 4167-4173.
[40]Van de Bittner, G. C.; Bertozzi, C. R.; Chang, C. J., Journal of the American Chemical Society 2013, 135, 1783-1795.
[41]Van de Bittner, G. C.; Dubikovskaya, E. A.; Bertozzi, C. R.; Chang, C. J., Proceedings of the National Academy of Sciences 2010, 107, 21316-21321.
[42]Haab, B. B., Current Opinion in Biotechnology 2006, 17, 415-421.
[43]Wilchek, M.; Bayer, E. A., [2] Introduction to avidin-biotin technology. In Methods Enzymol., Wilchek, M.; Bayer, E. A., Eds. Academic Press: 1990; Vol. 184, pp 5-13.
[44]Terai, T.; Maki, E.; Sugiyama, S.; Takahashi, Y.; Matsumura, H.; Mori, Y.; Nagano, T., Chemistry & Biology 2011, 18, 1261-1272.
[45]Pryor, W. A.; Squadrito, G. L., American Journal of Physiology-Lung Cellular and Molecular Physiology 1995, 268, L699-L722.
[46]Szabó, C., Toxicology Letters 2003, 140-141, 105-112.
[47]Yang, D.; Wang, H.-L.; Sun, Z.-N.; Chung, N.-W.; Shen, J.-G., Journal of the American Chemical Society 2006, 128, 6004-6005.
[48]Ferrer-Sueta, G.; Radi, R., ACS Chemical Biology 2009, 4, 161-177.
[49]Denicola, A.; Souza, J. M.; Radi, R., Proceedings of the National Academy of Sciences 1998, 95, 3566-3571.
[50]Kim, J.; Park, J.; Lee, H.; Choi, Y.; Kim, Y., Chemical Communications 2014, 50, 9353-9356.
[51]Chen, Z.-j.; Tian, Z.; Kallio, K.; Oleson, A. L.; Ji, A.; Borchardt, D.; Jiang, D.-e.; Remington, S. J.; Ai, H.-w., Journal of the American Chemical Society 2016, 138, 4900-4907.
[52]Chen, Z.-j.; Ren, W.; Wright, Q. E.; Ai, H.-w., Journal of the American Chemical Society 2013, 135, 14940-14943.
[53]Koide, Y.; Urano, Y.; Kenmoku, S.; Kojima, H.; Nagano, T., Journal of the American Chemical Society 2007, 129, 10324-10325.
[54]Zhao, C.; An, J.; Zhou, L.; Fei, Q.; Wang, F.; Tan, J.; Shi, B.; Wang, R.; Guo, Z.; Zhu, W.-H., Chemical Communications 2016, 52, 2075-2078.
[55]Peng, T.; Wong, N.-K.; Chen, X.; Chan, Y.-K.; Ho, D. H.-H.; Sun, Z.; Hu, J. J.; Shen, J.; El-Nezami, H.; Yang, D., Journal of the American Chemical Society 2014, 136, 11728-11734.
[56]Sun, Z.-N.; Wang, H.-L.; Liu, F.-Q.; Chen, Y.; Tam, P. K. H.; Yang, D., Organic Letters 2009, 11, 1887-1890.
[57]Li, H.; Li, X.; Wu, X.; Shi, W.; Ma, H., Analytical Chemistry 2017, 89, 5519-5525.
[58]Xu, K.; Chen, H.; Tian, J.; Ding, B.; Xie, Y.; Qiang, M.; Tang, B., Chemical Communications 2011, 47, 9468-9470.
[59]F., H.; Y., T.; M., Y.; S., W.; Y., L.; D., Z., Advanced Functional Materials 2006, 16, 91-94.
[60]Miller, E. W.; Albers, A. E.; Pralle, A.; Isacoff, E. Y.; Chang, C. J., Journal of the American Chemical Society 2005, 127, 16652-16659.
[61]Zielonka, J.; Podsiadły, R.; Zielonka, M.; Hardy, M.; Kalyanaraman, B., Free Radical Biology and Medicine 2016, 99, 32-42.
[62]Zielonka, J.; Sikora, A.; Hardy, M.; Joseph, J.; Dranka, B. P.; Kalyanaraman, B., Chemical Research in Toxicology 2012, 25, 1793-1799.
[63]Sikora, A.; Zielonka, J.; Lopez, M.; Joseph, J.; Kalyanaraman, B., Free Radical Biology and Medicine 2009, 47, 1401-1407.
[64]Brubaker, A.; Palmer, J.; Kovacs, E., Age-related Dysregulation of Inflammation and Innate Immunity: Lessons Learned from Rodent Models. 2011; Vol. 2, p 346-60.
[65]Dell'Albani, P.; Santangelo, R.; Torrisi, L.; Nicoletti, V.; de Vellis, J.; Giuffrida Stella, A. M., JAK/STAT signaling pathway mediates cytokine-induced iNOS expression in primary astroglial cell cultures. 2001; Vol. 65, p 417-24.
[66]Raad, H.; Paclet, M.-H.; Boussetta, T.; Kroviarski, Y.; Morel, F.; Quinn, M. T.; Gougerot-Pocidalo, M.-A.; Dang, P. M.-C.; El-Benna, J., The FASEB Journal 2009, 23, 1011-1022.
[67]Huang, Q.; Yuan, Y., American Journal of Physiology-Heart and Circulatory Physiology 1997, 273, H2442-H2451.
[68]Korchak, H. M.; Rossi, M. W.; Kilpatrick, L. E., Journal of Biological Chemistry 1998, 273, 27292-27299.
[69]Park, J.-W.; Babior, B. M., Biochemistry 1997, 36, 7474-7480.
[70]V., R. C.; Sue, T. K.; JoAnne, J., Diagnostic Cytopathology 1998, 19, 98-101.
[71]Pfeiffer, S.; Leopold, E.; Schmidt, K.; Brunner, F.; Mayer, B., British journal of pharmacology 1996, 118, 1433-1440.
[72]Kuzkaya, N.; Weissmann, N.; Harrison, D. G.; Dikalov, S., Biochemical Pharmacology 2005, 70, 343-354.
[73]Fee, J. A.; Bull, C., Journal of Biological Chemistry 1986, 261, 13000-13005.
[74]Weiss, R.; Flickinger, A.; Rivers, W.; Hardy, M.; Aston, K.; Ryan, U.; Riley, D., Journal of Biological Chemistry 1993, 268, 23049-23054.
[75]Stern, M. K.; Jensen, M. P.; Kramer, K., Journal of the American Chemical Society 1996, 118, 8735-8736.
[76]Squadrito, G. L.; Cueto, R.; Splenser, A. E.; Valavanidis, A.; Zhang, H.; Uppu, R. M.; Pryor, W. A., Archives of biochemistry and biophysics 2000, 376, 333-337.
[77]De Castro, M. L.; Herrera, M., Biosensors and Bioelectronics 2003, 18, 279-294.
[78]Demchenko, A. P., Introduction to fluorescence sensing. Springer Science & Business Media: 2008.