簡易檢索 / 詳目顯示

研究生: 黃建修
Huang, Jian-shiou
論文名稱: 憶阻記憶體元件之材料開發與探索
Material Exploration and Applications in Resistive Random Access Memory
指導教授: 李紫原
Lee, Chi-Yuan
金重勳
Chin, Tsung-Shune
闕郁倫
Chueh, Yu-Lun
口試委員: 曾俊元
Tseng, Tseung-Yuen
林成利
Lin, Cheng-Li
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 163
中文關鍵詞: 憶阻記憶體氧化矽銅摻雜鋅摻雜氧化鋅循環伏安電鍍錫摻雜氧化銦
外文關鍵詞: Resistive random-access memory, Silicon oxide, Cu-dopped, Zn-doped, Zinc oxide, Cyclic-voltammetric deposition, Tin-dopped indium oxide
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討非揮發性記憶體,特別是憶阻式記憶體新穎材料與結構的開發,藉以改善記憶體表現,並藉由材料分析與理論基礎相互探討可能的傳導機制。
    本論文的第一部分,非晶氧化矽憶阻材料,嘗試添加不同含量的銅(SCuO),以提昇憶阻性質。首先嘗試調控反應性共濺鍍摻雜第三元素─銅的含量,以最佳化Cu/SCuO/Pt堆疊的憶阻特性。於最低瓦數(2 W)摻銅的元件中發現,其具有最佳無極性操作特性,即寫入/抹去過程與操作極性無關,也具有穩定的耐久度操作特性(>100次),更有相對低的操作功率與操作電壓(SET在+0.75 V,RESET 在+0.45 V內可以完成)。再由X射線光電子能譜儀與溫度阻值係數的分析發現銅傳導路徑的存在呈上寬下窄的錐狀分布,依此我們嘗試提出一個熱輔助銅氧化還原於燈絲生成與斷裂的傳導機制。
    第二部分則嘗試添加另一種第三元素─鋅─於非晶氧化矽中,嘗試調控鋅於非晶氧化矽中的摻雜量。發現隨著鋅摻雜量的不同,可以得到不同的臨界電壓轉換特性─即選擇器特性。當我們施加電壓抵一個臨界值,電流會驟升,但當電壓釋放後,電流回到初始態。而當施加較大保護電流時,可得到由選擇器特性轉變成憶阻特性的特殊電性轉換,並藉由不同的電壓電流源操作控制,可以得到穩定且差別明顯的憶阻窗。隨後利用理論模擬配合吸收光譜分析,可知在高阻態時,載子可於散佈在氧化矽中的奈米氧化鋅/鋅團簇間克服一個能障後躍遷。施加大電流更可以在奈米團簇中形成傳導燈絲,而形成低阻態,燈絲的長消造成阻態得以轉換。由於在同一物系中同時存在選擇器與憶阻器特性,在未來發展上,可嘗試調控匹配的電性,並進一步將兩層薄膜鍍製在一起,得到可抑制潛電流的元件特性。
    在本文第三部分,嘗試發展一種成本取向的功能性薄膜。我們利用三極式電鍍槽電鍍氧化鋅薄膜,發現利用循環伏安法可以大幅提高氧化鋅薄膜的披覆性,相較於傳統的定電壓或是定電流電鍍,此法可應用在所有成核控制的電鍍物系上,以提高薄膜的披覆性。電鍍氧化鋅薄膜的憶阻特性與傳導機制,也可由空間限制電荷傳導解釋,並可萃取出載子濃度與載子遷移率。最後利用X射線光電子能譜儀來探測由表面到深層的氧鍵結情形,發現有大量的氧缺陷在氧化鋅薄膜表面,而氧化鋅薄膜內部則有較良好的鍵結。所以我們假設均質的氧缺陷受到操作極性的遷移,是造成憶阻性質轉換的主因。
    在本文的四部分,我們設計並實現利用電場驅動透明導電薄膜中的氧移動,進而得到憶阻性質。此特性可在同一層透明導電薄膜中獲取,即同時具有憶阻特性與電傳導特性。如此以單層導電層與接觸電極(MM’)結構取代傳統的電極/絕緣體/電極(MIM)結構,可免去一層薄膜,此為憶阻器的一大創新,並可大幅減少半導體製程中的光罩數目。文中,我們使用掃描式電子探微儀分析平面的成分分布,發現變化主要來自於受到電驅動的氧載子移動,並造成憶阻特性。我們更進一步利用電子微影技術與導電式原子力顯微鏡來趨近最小線寬的操作可能。在未來發展方面,我們提出垂直結構的高密度堆疊結構,更可以大幅降低成本。


    Fast-emerging next-generation nonvolatile memories include resistive random access memory (ReRAM), phase-change random access memory (PRAM), magnetoresistive random access memory (MRAM), ferroelectric random access memory (FeRAM). In this dissertation, our purpose were the development of new functional material and novel structure for ReRAM application, aiming to improve the memristive characteristics.
    The first topic of this dissertation focuses on the electric induced resistive switching phenomena based on Cu-doped amorphous SiOx functional films (SCuO). Electrical switching of resistive memory is highly interface-dependent. We studied such a switching of Cu-doped amorphous SiOx thin-films in sandwich stacks Cu/SCuO/Pt. The stacks were prepared using radio frequency sputtering except Cu co-doping which utilized direct current (DC) power from 2 W to 15 W. We characterized electrical switching behavior by a Keithley 4200 semiconductor analyzer. Cu/SCuO/Pt devices with Cu-doping at DC-sputter 2 W exhibit the best switching performance showing reproducible forming-free and non-polar switching. The endurance is more than 102 cycles, electrical resistance ratio more than 10, and operating voltages as low as: ±0.75 V for SET and ±0.45 V for RESET. The switching mechanism of Cu/SCuO/Pt stacks is explained based on both filamentary conduction and diffusion of Cu ions/atoms in SiOx. Both ‘temperature coefficient of electrical resistance’ and ‘bonding status’ at different depth-profiles as analyzed by using X-ray photoelectron spectroscopy provide robust evidences of the mechanisms. Cu-doped amorphous SiOx thin-films are thus potential for resistive memory.
    The second topic of this dissertation focuses on the electric induced resistive switching phenomena based on Zn-doped amorphous SiOx films, (SZO). We demonstrated dual resistive switching capability of SZO films. Both mono-stable selector-switching and bi-stable memristive switching are tuning via Zn-doping content and appropriate operation conditions. Voltages of selector-switching in Pt/SZO/ITO stacks can be noticeably modulated by varying Zn-doping. The selector-switching is stable for more than 100 cycles with a resistance ratio of 104 at voltages within +3 V. Stable memristive switching is obtainable by current-controlled RESET and voltage-controlled SET. We found that selector-switching arises from generalized trap-assisted tunneling of electrons provided by zinc addition. The dual-switching-mode of SZO is proposed to facilitate implementation of cross-bar RRAM.
    The third topic of this dissertation, aims at developing a cost-effective method for ReRAM application. Cyclic voltammetry deposition (CV-D) was applied to deposit ZnO films on indium-tin-oxide (ITO) glass. The result is much superior coverage of the CV-D thin films as compared to those obtained by conventional electrochemical deposition. The Pt/CV-D ZnO/ITO devices in which ZnO prepared by CV-sweeping within ± 0.9 V for 6 cycles then fix-potential-deposited at - 0.75 V for 300 s show reproducible forming-free bipolar switching operation at voltages ≤ ±1 V. The cycle-life is at least 200 cycles. The electrical conduction belongs to space-charge-limited-current conduction mechanism, which is fitted to extract carrier mobility 0.97 cm2/Vs and carrier concentration 8.6x1018 cm-3. Gradient oxygen bonding status in ZnO film, typical of cyclic voltammetry deposition, was found to facilitate the electrical switching at low voltages.
    In the fourth topic of this dissertation, is to work out a simplest ReRAM configuration based on single layer transparent conducting oxides (TCO). Bias-polarity-induced transformation of point contact resistive switching memory is demonstrated on three kinds of TCO layers, including tin-doped indium oxides (ITO), fluorine-doped tin oxides (FTO), and aluminum-doped zinc oxides (AZO) as conducting electrode as well as memristive material by the controllably electrical field simultaneously. Voltage-controlled SET and current-controlled RESET were utilized to obtain much more stable endurance results. The special RS behavior based on the TCO single layer provides a new material selection and the simplest geometry to realize the highest stacking density at development of three dimensional (3D) point-contact ReRAM application.

    論文摘要(ABSTRACT IN CHINESE) I ABSTRACT III LIST OF FIGURES XIII LIST OF TABLES XXVIII LIST OF ABBREVIATIONS XXIX CHAPTER 1 - BACKGROUND AND MOTIVATION 2 1.1 INTRODUCTION TO NON-VOLATILE MEMORY 2 1.1.1 Flash Memory 4 1.1.2 Magnetoresistive Random Access Memory (MRAM) 7 1.1.3 Ferroelectric Random Access Memory (FeRAM) 13 1.1.4 Phase-Change Random Access Memory (PRAM) 15 1.1.5 Resistive Random Access Memory (ReRAM) 18 1.1.6 Other Memories 21 1.2 MOTIVATION 23 1.2.1 Competitive Researches of ReRAM 23 1.2.2 The Challenge of ReRAM 25 1.2.3 The Selection and Design of Materials 27 1.3 OBJECTIVES OF THIS STUDY 28 1.3.1 Effect of Additives in Silicon Oxides. The Addition of Cu, and Zn 28 1.3.2 Low Cost Fabrication Via Wet Process, CV-D ZnO 28 1.3.3 The Simplest Structure: Conductive Oxide ReRAM 29 CHAPTER 2 - LITERATURE REVIEW 31 2.1 RESISTIVE SWITCHING PHENOMENA 31 2.1.1 Discovery Of Resistive Switching Phenomena 31 2.1.2 Materials 37 2.1.3 Operation Polarity 38 2.2 MECHANISMS OF LEAKAGE CURRENT 41 2.2.1 Space-Charge-Limited Current 43 2.2.2 Poole-Frenkle Emission 44 2.2.3 Schottky Emission 45 2.2.4 Fowler-Nordheim Tunneling 46 2.2.5 Generalized Trap-assisted Tunneling 46 2.3 RECTIFYING ELEMENTS 48 2.3.1 Complementary Resistive Switching (CRS) Elements 50 2.3.2 Non-Linear Rectifier 53 2.3.3 Diodes 55 CHAPTER 3 - EXPERIMENTAL TECHNIQUES 58 3.1 EXPERIMENTAL FLOW 58 3.2 SAMPLE FABRICATION 59 3.2.1 Magnetron Sputtering System 59 3.2.2 Potentiostat for Electrodeposition 60 3.2.3 Conventional and Electron Beam Lithography 61 3.2.4 Focused Ion Beam Milling 63 3.3 ELECTRICAL AND MATERIAL ANALYSIS 64 3.3.1 Keithley 4200 Semiconductor Analyzer 64 3.3.2 X-Ray Diffractometer 65 3.3.3 Field-Emission Scanning Electron Microscopy 66 3.3.4 Field-Emission Transmission Electron Microscopy 67 3.3.5 Electron Spectroscopy For Chemical Analysis 69 3.3.6 Auger Electron Spectroscopy 70 3.3.7 Conducting-Probe Atomic Force Microscopy 71 CHAPTER 4 - NONPOLAR ELECTRICAL SWITCHING BEHAVIOR IN CU/SCUO/PT STACKS 74 4.1 MOTIVATION OF DEVELOPING SCUO FILMS IN RERAM APPLICATION 74 4.2 EXPERIMENTAL PROCEDURES 75 4.2.1 Sample Fabrication 75 4.2.2 Electrical and Material Characteristics 75 4.3 RESULTS AND DISCUSSION 77 4.3.1 Resistive Switching Characteristics of Cu/SCuO/Pt Stacks 77 4.3.2 Chemical Bonding States and Depth Profile Analysis of SCuO Films 78 4.4 SUMMARY 87 CHAPTER 5 - AMORPHOUS ZINC-DOPED SILICON OXIDE RESISTIVE SWITCHING MEMORY: FROM A SELECTOR TO A MEMRISTOR 90 5.1 MOTIVATION OF DEVELOPING SZO FILMS IN RERAM APPLICATION 90 5.2 EXPERIMENTAL PROCEDURES 92 5.2.1 Sample Fabrication 92 5.2.2 Electrical and Material Characteristics 92 5.3 RESULTS AND DISCUSSION 93 5.3.1 Nanostructure and Crystallinity of SZO Films 93 5.3.2 Chemical Bonding States Of SZO Films 94 5.3.3 Special Resistive Switching Characteristics Of Pt/SZO/ITO Stacks 96 5.3.4 Conduction Mechanism of Pt/SZO/ITO Stacks 97 5.4 SUMMARY 100 CHAPTER 6 - FORMING-FREE BIPOLAR MEMRISTIVE SWITCHING OF ZNO FILMS DEPOSITED BY CYCLIC-VOLTAMMETRY 102 6.1 MOTIVATION OF DEVELOPING CV-D ZNO FILMS IN RERAM APPLICATION 102 6.2 EXPERIMENTAL PROCEDURES 104 6.2.1 Sample Fabrication 104 6.2.2 Electrical and Material Characteristics 104 6.3 RESULTS AND DISCUSSION 106 6.3.1 Effects of Variants in Cyclic-Voltammetry Deposition Process 106 6.3.2 Resistive Switching Characteristics of Pt/CV-D ZnO/ITO Stacks 111 6.3.3 Chemical Bonding States and Depth Profile Analysis of CV-D ZnO Films 112 6.3.4 Conduction Mechanism of Pt/CV-D ZnO/ITO Stacks 115 6.4 SUMMARY 117 CHAPTER 7 - TRANSPARENT CONDUCTING OXIDES FOR RESISTIVE SWITCHING MEMORY 120 7.1 MOTIVATION OF DEVELOPING CONDUCTIVE OXIDE FILMS IN RERAM APPLICATION 120 7.2 EXPERIMENTAL PROCEDURES 122 7.2.1 Sample Fabrication 122 7.2.2 Electrical and Material Characteristics 122 7.3 RESULTS AND DISCUSSION 123 7.3.1 Resistive Switching Characteristics of Single Conductive Oxide Films 123 7.3.2 Resistive Switchable Mechanism of Single Conductive Oxide Films 126 7.3.3 Resistive Switching Characteristics And Area Effect of ITO Devices 129 7.3.4 Demonstration of Smallest Feature Size using C-AFM 133 7.4 SUMMARY 136 CHAPTER 8 - CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 138 8.1 GENERAL CONCLUSIONS 138 8.2 SUGGESTIONS FOR FUTURE WORK 140 8.2.1 Effect of Additives in Silicon Oxides. The Addition of Cu, and Zn 140 8.2.2 Low Cost Fabrication Via Wet Process, CV-D ZnO 142 8.2.3 The Simplest Ever ReRAM Structure: Conductive Oxide ReRAM 143 REFERENCES 146 List of Publications 161

    [1] E. Pop, "Energy dissipation and transport in nanoscale devices", Nano Research, 3, (2010), 147.
    [2] D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, C. S. Hwang, "Emerging memories: resistive switching mechanisms and current status", Reports on Progress in Physics, 75, (2012), 076502.
    [3] W. H. Butler, A. Gupta, "Magnetic memory: A signal boost is in order", Nature Materials, 3, (2004), 845.
    [4] S. Horiuchi, Y. Tokura, "Organic ferroelectrics", Nature Materials, 7, (2008), 357.
    [5] M. Wuttig, N. Yamada, "Phase-change materials for rewriteable data storage", Nat Mater, 6, (2007), 824.
    [6] J. Y. Son, Y. H. Shin, "Direct observation of conducting filaments on resistive switching of NiO thin films", Applied Physics Letters, 92, (2008), 222106.
    [7] "Memory hierarchy", http://www.cs.ucla.edu/classes/winter13/cs111/scribe/15b/.
    [8] R. Waser, R. Dittmann, G. Staikov, K. Szot, "Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges", Advanced Materials, 21, (2009), 2632.
    [9] K. Kahng, S. M. Sze, "A floating gate and its application to memory devices", Electron Devices, IEEE Transactions on, 14, (1967), 629.
    [10] P. Pavan, R. Bez, P. Olivo, E. Zanoni, "Flash memory cells-an overview", Proceedings of the IEEE, 85, (1997), 1248.
    [11] Y. Park, J. Choi, C. Kang, C. Lee, Y. Shin, B. Choi, J. Kim, S. Jeon, J. Sel, J. Park, K. Choi, T. Yoo, J. Sim, K. Kim, "Highly Manufacturable 32Gb Multi-Level NAND Flash Memory with 0.0098 µm2 Cell Size using TANOS(Si-Oxide-Al2O3-TaN) Cell Technology", 2006, presented at IEDM '06.
    [12] S. Maikap, T.-Y. Wang, P.-J. Tzeng, H.-Y. Lee, C.-H. Lin, C.-C. Wang, L.-S. Lee, J.-R. Yang, M.-J. Tsai, "Low voltage operation of high-K HfO2/TiO2/Al2O3 single quantum well for nanoscale flash memory device applications", Japanese Journal of Applied Physics, 47, (2008), 1818.
    [13] C. Y. Ng, T. P. Chen, L. Ding, M. Yang, J. I. Wong, P. Zhao, X. H. Yang, K. Y. Liu, M. S. Tse, A. D. Trigg, S. Fung, "Influence of Si nanocrystal distributed in the gate oxide on the MOS capacitance", Electron Devices, IEEE Transactions on, 53, (2006), 730.
    [14] "Hysteresis Loop", http://hyperphysics.phy-astr.gsu.edu/hbase/solids/hyst.html.
    [15] J.-G. Zhu, "Magnetoresistive Random Access Memory: The Path to Competitiveness and Scalability", Proceedings of the IEEE, 96, (2008), 1786.
    [16] J. M. Slaughter, in Book "Materials for Magnetoresistive Random Access Memory", Vol. 39, 2009, 277.
    [17] L. J. Schwee, P. E. Hunter, K. A. Restorff, M. T. Shephard, "THE CONCEPT AND INITIAL STUDIES OF A CROSSTIE RANDOM-ACCESS MEMORY (CRAM)", Journal of Applied Physics, 53, (1982), 2762.
    [18] S. Stavroyiannis, "Planar Hall effect and magnetoresistance in Ni81Fe19 and Co square shaped thin films", Solid State Communications, 125, (2003), 333.
    [19] M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, "Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices", Physical Review Letters, 61, (1988), 2472.
    [20] J. S. Moodera, L. R. Kinder, T. M. Wong, R. Meservey, "Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions", Physical Review Letters, 74, (1995), 3273.
    [21] A. Sheikholeslami, P. G. Gulak, "A survey of circuit innovations in ferroelectric random-access memories", Proceedings of the IEEE, 88, (2000), 667.
    [22] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. H. Chen, H. L. Lung, C. H. Lam, "Phase-change random access memory: A scalable technology", IBM Journal of Research and Development, 52, (2008), 465.
    [23] S. J. Ahn, Y. N. Hwang, Y. J. Song, S. H. Lee, S. Y. Lee, J. H. Park, C. W. Jeong, K. C. Ryoo, J. M. Shin, Y. Fai, J. H. Oh, G. H. Koh, G. T. Jeong, S. H. Joo, S. H. Choi, Y. H. Son, J. C. Shin, K. Kim, H. S. Jeong, K. Kinam, "Highly reliable 50nm contact cell technology for 256Mb PRAM", 2005, presented at VLSI Technology, 2005. Digest of Technical Papers. 2005 Symposium on.
    [24] D. Krebs, S. Raoux, C. T. Rettner, G. W. Burr, R. M. Shelby, M. Salinga, C. M. Jefferson, M. W. I. B. M. M. P. J. Project, "Characterization of phase change memory materials using phase change bridge devices", Journal of Applied Physics, 106, (2009), 054308.
    [25] T. W. Hickmott, "LOW-FREQUENCY NEGATIVE RESISTANCE IN THIN ANODIC OXIDE FILMS", Journal of Applied Physics, 33, (1962), 2669.
    [26] J. F. Gibbons, W. E. Beadle, "Switching properties of thin Nio films", Solid-State Electronics, 7, (1964), 785.
    [27] W. R. Hiatt, T. W. Hickmott, "BISTABLE SWITCHING IN NIOBIUM OXIDE DIODES", Applied Physics Letters, 6, (1965), 106.
    [28] R. W. Brander, A. L. Boughey, "The etching of α-silicon carbide", British Journal of Applied Physics, 18, (1967), 905.
    [29] F. Argall, "Switching phenomena in titanium oxide thin films", Solid-State Electronics, 11, (1968), 535.
    [30] A. Asamitsu, Y. Tomioka, H. Kuwahara, Y. Tokura, "Current switching of resistive states in magnetoresistive manganites", Nature, 388, (1997), 50.
    [31] K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, "Quantized conductance atomic switch", Nature, 433, (2005), 47.
    [32] R. Waser, M. Aono, "Nanoionics-based resistive switching memories", Nature Materials, 6, (2007), 833.
    [33] R. Meyer, L. Schloss, J. Brewer, R. Lambertson, W. Kinney, J. Sanchez, D. Rinerson, "Oxide Dual-Layer Memory Element for Scalable Non-Volatile Cross-Point Memory Technology", IEEE 9th Annual Non-Volatile Memory Technology Symposium, 2008.
    [34] A. Flocke, T. G. Noll, "Fundamental analysis of resistive nano-crossbars for the use in hybrid Nano/CMOS-memory", 2007, presented at Solid State Circuits Conference, 2007. ESSCIRC 2007. 33rd European.
    [35] S. S. Sheu, P. C. Chiang, W. P. Lin, H. Y. Lee, P. S. Chen, Y. S. Chen, T. Y. Wu, F. T. Chen, K. L. Su, M. J. Kao, K. H. Cheng, M. J. Tsai, "A 5ns fast write multi-level non-volatile 1 K bits RRAM memory with advance write scheme", 2009, presented at VLSI Circuits, 2009.
    [36] C.-H. Wang, Y.-H. Tsai, K.-C. Lin, M.-F. Chang, Y.-C. King, C.-J. Lin, S.-S. Sheu, Y.-S. Chen, H.-Y. Lee, F. T. Chen, M.-J. Tsai, "Three-dimensional 4F2 ReRAM cell with CMOS logic compatible process", 2010, presented at Electron Devices Meeting (IEDM), 2010 IEEE International.
    [37] E. Linn, R. Rosezin, C. Kugeler, R. Waser, "Complementary resistive switches for passive nanocrossbar memories", Nature Materials, 9, (2010), 403.
    [38] M.-J. Lee, Y. Park, B.-S. Kang, S.-E. Ahn, C. Lee, K. Kim, W. Xianyu, G. Stefanovich, J.-H. Lee, S.-J. Chung, Y.-H. Kim, C.-S. Lee, J.-B. Park, I.-K. Yoo, "2-stack 1D-1R Cross-point Structure with Oxide Diodes as Switch Elements for High Density Resistance RAM Applications", 2007, presented at Electron Devices Meeting, 2007. IEDM 2007. IEEE International.
    [39] J. Shin, I. Kim, K. P. Biju, M. Jo, J. Park, J. Lee, S. Jung, W. Lee, S. Kim, S. Park, H. Hwang, "TiO2-based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application", Journal of Applied Physics, 109, (2011), 033712.
    [40] "NRAMTM", http://www.nantero.com/mission.html.
    [41] M. Bolks, F. Hanssen, L. Abelmann, P. Havinga, P. Hartel, P. Jansen, C. Lodder, G. Smit, in Secondary "Micro Scanning Probe Array memory (µSPAM)", (Ed: F. Karelse), STW Technology Foundation, Veldhoven, the Netherlands 2001, 17.
    [42] "Oxide-based Resistive Memory Technology", http://phys.nsysu.edu.tw/ezfiles/85/1085/img/588/Oxide-basedResistiveMemoryTechnology_CHLien.pdf.
    [43] "Toshiba and Sandisk announced a 32Gb ReRAM fabricated via 24 nm-process, ISSCC 2013", http://www.eetimes.com/electronics-news/4401652/ISSCC-preview--Revving-ReRAMS--boosting-memory-bandwidth.
    [44] "International Technology Roadmap for Semiconductors (ITRS2012)".
    [45] J. J. Yang, D. B. Strukov, D. R. Stewart, "Memristive devices for computing", Nat Nano, 8, (2013), 13.
    [46] T. Prodromakis, C. Toumazou, L. Chua, "Two centuries of memristors", Nat Mater, 11, (2012), 478.
    [47] L. O. Chua, "MEMRISTOR - MISSING CIRCUIT ELEMENT", Ieee Transactions on Circuit Theory, CT18, (1971), 507.
    [48] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, "The missing memristor found", Nature, 453, (2008), 80.
    [49] J. J. Yang, M. D. Pickett, X. Li, A. A. OhlbergDouglas, D. R. Stewart, R. S. Williams, "Memristive switching mechanism for metal/oxide/metal nanodevices", Nat Nano, 3, (2008), 429.
    [50] F. Miao, J. P. Strachan, J. J. Yang, M.-X. Zhang, I. Goldfarb, A. C. Torrezan, P. Eschbach, R. D. Kelley, G. Medeiros-Ribeiro, R. S. Williams, "Anatomy of a Nanoscale Conduction Channel Reveals the Mechanism of a High-Performance Memristor", Advanced Materials, 23, (2011), 5633.
    [51] D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, C. S. Hwang, "Atomic structure of conducting nanofilaments in TiO2 resistive switching memory", Nat Nano, 5, (2010), 148.
    [52] S. H. Chang, S. C. Chae, S. B. Lee, C. Liu, T. W. Noh, J. S. Lee, B. Kahng, J. H. Jang, M. Y. Kim, D. W. Kim, C. U. Jung, "Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors", Applied Physics Letters, 92, (2008), 183507.
    [53] Y. Kyung Jean, L. Min Hwan, K. Gun Hwan, S. Seul Ji, S. Jun Yeong, H. Sora, Y. Jung Ho, K. Kyung Min, H. Cheol Seong, "Memristive tri-stable resistive switching at ruptured conducting filaments of a Pt/TiO 2 /Pt cell", Nanotechnology, 23, (2012), 185202.
    [54] S. John Paul, B. S. Dmitri, B. Julien, J. J. Yang, M.-R. Gilberto, R. S. Williams, "The switching location of a bipolar memristor: chemical, thermal and structural mapping", Nanotechnology, 22, (2011), 254015.
    [55] J. Borghetti, D. B. Strukov, M. D. Pickett, J. J. Yang, D. R. Stewart, R. S. Williams, "Electrical transport and thermometry of electroformed titanium dioxide memristive switches", Journal of Applied Physics, 106, (2009), 124504.
    [56] W. Jiang, R. J. Kamaladasa, Y. M. Lu, A. Vicari, R. Berechman, P. A. Salvador, J. A. Bain, Y. N. Picard, M. Skowronski, "Local heating-induced plastic deformation in resistive switching devices", Journal of Applied Physics, 110, (2011), 054514.
    [57] S. Menzel, M. Waters, A. Marchewka, U. Böttger, R. Dittmann, R. Waser, "Origin of the Ultra-nonlinear Switching Kinetics in Oxide-Based Resistive Switches", Advanced Functional Materials, 21, (2011), 4487.
    [58] Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, M. Liu, "Real-Time Observation on Dynamic Growth/Dissolution of Conductive Filaments in Oxide-Electrolyte-Based ReRAM", Advanced Materials, 24, (2012), 1844.
    [59] Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, "Observation of conducting filament growth in nanoscale resistive memories", Nat Commun, 3, (2012), 732.
    [60] J. P. Strachan, M. D. Pickett, J. J. Yang, S. Aloni, A. L. David Kilcoyne, G. Medeiros-Ribeiro, R. Stanley Williams, "Direct Identification of the Conducting Channels in a Functioning Memristive Device", Advanced Materials, 22, (2010), 3573.
    [61] B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, "Resistive switching mechanism of TiO[sub 2] thin films grown by atomic-layer deposition", Journal of Applied Physics, 98, (2005), 033715.
    [62] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J. S. Kim, J. S. Choi, B. H. Park, "Reproducible resistance switching in polycrystalline NiO films", Applied Physics Letters, 85, (2004), 5655.
    [63] S. Q. Liu, N. J. Wu, A. Ignatiev, "Electric-pulse-induced reversible resistance change effect in magnetoresistive films", Applied Physics Letters, 76, (2000), 2749.
    [64] A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, D. Widmer, "Reproducible switching effect in thin oxide films for memory applications", Applied Physics Letters, 77, (2000), 139.
    [65] K. Szot, W. Speier, G. Bihlmayer, R. Waser, "Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3", Nat Mater, 5, (2006), 312.
    [66] O. Schneegans, A. Moradpour, O. Dragos, S. Franger, N. Dragoe, L. Pinsard-Gaudart, P. Chretien, A. Revcolevschi, "NaxCoO2: A new opportunity for rewritable media?", Journal of the American Chemical Society, 129, (2007), 7482.
    [67] A. Moradpour, O. Schneegans, S. Franger, A. Revcolevschi, R. Salot, P. Auban-Senzier, C. Pasquier, E. Svoukis, J. Giapintzakis, O. Dragos, V.-C. Ciomaga, P. Chretien, "Resistive Switching Phenomena in LixCoO2 Thin Films", Advanced Materials, 23, (2011), 4141.
    [68] R. Pandian, B. J. Kooi, G. Palasantzas, J. T. M. De Hosson, A. Pauza, "Polarity-dependent reversible resistance switching in Ge--Sb--Te phase-change thin films", Applied Physics Letters, 91, (2007), 152103.
    [69] W. Zheng, P. B. Griffin, J. McVittie, S. Wong, P. C. McIntyre, Y. Nishi, "Resistive Switching Mechanism in ZnxCd1-xS Nonvolatile Memory Devices", Electron Device Letters, IEEE, 28, (2007), 14.
    [70] M. N. Kozicki, M. Mitkova, "Mass transport in chalcogenide electrolyte films – materials and applications", Journal of Non-Crystalline Solids, 352, (2006), 567.
    [71] K. Tae-Wook, C. Hyejung, O. Seung-Hwan, J. Minseok, W. Gunuk, C. Byungjin, K. Dong-Yu, H. Hyunsang, L. Takhee, "Resistive switching characteristics of polymer non-volatile memory devices in a scalable via-hole structure", Nanotechnology, 20, (2009), 025201.
    [72] G. T. Wright, "Mechanisms of space-charge-limited current in solids", Solid-State Electronics, 2, (1961), 165.
    [73] J. G. Simmons, "Poole-Frenkel Effect and Schottky Effect in Metal-Insulator-Metal Systems", Physical Review, 155, (1967), 657.
    [74] P. R. Emtage, W. Tantraporn, "Schottky Emission Through Thin Insulating Films", Physical Review Letters, 8, (1962), 267.
    [75] N. M. Ravindra, J. Zhao, "Fowler-Nordheim tunneling in thin SiO 2 films", Smart Materials and Structures, 1, (1992), 197.
    [76] M. P. Houng, Y. H. Wang, W. J. Chang, "Current transport mechanism in trapped oxides: A generalized trap-assisted tunneling model", Journal of Applied Physics, 86, (1999), 1488.
    [77] Z.-J. Liu, J.-Y. Gan, T.-R. Yew, "ZnO-based one diode-one resistor device structure for crossbar memory applications", Applied Physics Letters, 100, (2012), 153503.
    [78] Y. Yang, P. Sheridan, W. Lu, "Complementary resistive switching in tantalum oxide-based resistive memory devices", Applied Physics Letters, 100, (2012), 203112.
    [79] M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim, C.-J. Kim, D. H. Seo, S. Seo, U. I. Chung, I.-K. Yoo, K. Kim, "A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures", Nat Mater, 10, (2011), 625.
    [80] D. Adler, H. K. Henisch, S. N. Mott, "The mechanism of threshold switching in amorphous alloys", Reviews of Modern Physics, 50, (1978), 209.
    [81] K. DerChang, S. Tang, I. V. Karpov, R. Dodge, B. Klehn, J. A. Kalb, J. Strand, A. Diaz, N. Leung, J. Wu, S. Lee, T. Langtry, C. Kuo-wei, C. Papagianni, L. Jinwook, J. Hirst, S. Erra, E. Flores, N. Righos, H. Castro, G. Spadini, "A stackable cross point Phase Change Memory", 2009, presented at Electron Devices Meeting (IEDM), 2009 IEEE International.
    [82] S. Myungwoo, L. Joonmyoung, P. Jubong, S. Jungho, C. Godeuni, J. Seungjae, L. Wootae, K. Seonghyun, P. Sangsu, H. Hyunsang, "Excellent Selector Characteristics of Nanoscale VO2 for High-Density Bipolar ReRAM Applications", Electron Device Letters, IEEE, 32, (2011), 1579.
    [83] W. Lee, J. Park, S. Kim, J. Woo, J. Shin, G. Choi, S. Park, D. Lee, E. Cha, B. H. Lee, H. Hwang, "High Current Density and Nonlinearity Combination of Selection Device Based on TaOx/TiO2/TaOx Structure for One Selector–One Resistor Arrays", ACS Nano, 6, (2012), 8166.
    [84] M.-J. Lee, S. I. Kim, C. B. Lee, H. Yin, S.-E. Ahn, B. S. Kang, K. H. Kim, J. C. Park, C. J. Kim, I. Song, S. W. Kim, G. Stefanovich, J. H. Lee, S. J. Chung, Y. H. Kim, Y. Park, "Low-Temperature-Grown Transition Metal Oxide Based Storage Materials and Oxide Transistors for High-Density Non-volatile Memory", Advanced Functional Materials, 19, (2009), 1587.
    [85] M. J. Lee, S. Seo, D. C. Kim, S. E. Ahn, D. H. Seo, I. K. Yoo, I. G. Baek, D. S. Kim, I. S. Byun, S. H. Kim, I. R. Hwang, J. S. Kim, S. H. Jeon, B. H. Park, "A Low-Temperature-Grown Oxide Diode as a New Switch Element for High-Density, Nonvolatile Memories", Advanced Materials, 19, (2007), 73.
    [86] "Lithography", http://www.bit-tech.net/hardware/cpus/2010/06/10/how-to-make-a-cpu-from-sand-to-shelf/2.
    [87] "E-Beam Lithography: Multi-Beam Source", http://www.tnw.tudelft.nl/en/about-faculty/departments/imaging-science-and-technology/research/researchgroups/charged-particle-optics/research-projects/electron-and-ion-sources/multi-beam-source/.
    [88] S. Chaiwan, M. Hoffman, P. Munroe, "Investigation of sliding wear surfaces in alumina using transmission electron microscopy", Science and Technology of Advanced Materials, 7, (2006), 826.
    [89] R. Krueger, "Dual-column (FIB–SEM) wafer applications", Micron, 30, (1999), 221.
    [90] "X-ray Diffractometer", http://serc.carleton.edu/research_education/geochemsheets/techniques/SXD.html.
    [91] "SEM Column", http://frontierlab.co.kr/default/product/sem/principle_sem.php.
    [92] "Layout of a basic TEM", http://en.wikipedia.org/wiki/Transmission_electron_microscopy.
    [93] "Operation Principles for TEM", http://micron.ucr.edu/public/manuals/Tem-intro.pdf.
    [94] C. S. Fadley, "X-ray photoelectron spectroscopy: Progress and perspectives", Journal of Electron Spectroscopy and Related Phenomena, 178–179, (2010), 2.
    [95] "AES Instrument", http://wiki.utep.edu/display/~anarayanaswamy/AUGER+ELECTRON+SPECTROSCOPY
    [96] "Conducting Probe Atomic/Fiction Force Microscopy", http://rhk-tech.com/category/image-gallery/page/4/.
    [97] J. J. Yang, M. D. Pickett, X. M. Li, D. A. A. Ohlberg, D. R. Stewart, R. S. Williams, "Memristive switching mechanism for metal/oxide/metal nanodevices", Nature Nanotechnology, 3, (2008), 429.
    [98] C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J.-S. Zhao, C. S. Hwang, "Identification of a determining parameter for resistive switching of TiO2 thin films", Applied Physics Letters, 86, (2005), 262907.
    [99] C. Dumas, D. Deleruyelle, A. Demolliens, C. Muller, S. Spiga, E. Cianci, M. Fanciulli, I. Tortorelli, R. Bez, "Resistive switching characteristics of NiO films deposited on top of W or Cu pillar bottom electrodes", Thin Solid Films, 519, (2011), 3798.
    [100] K. C. Liu, W. H. Tzeng, K. M. Chang, Y. C. Chan, C. C. Kuo, "Effect of ultraviolet light exposure on a HfO(x) RRAM device", Thin Solid Films, 518, (2010), 7460.
    [101] W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, M. J. Tsai, "Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications", Applied Physics Letters, 92, (2008), 022110.
    [102] J. Y. Son, Y. H. Shin, C. S. Park, "Bistable resistive states of amorphous SrRuO[sub 3] thin films", Applied Physics Letters, 92, (2008), 133510.
    [103] C. Schindler, S. C. P. Thermadam, R. Waser, M. N. Kozicki, "Bipolar and unipolar resistive switching in Cu-doped SiO2", Ieee Transactions on Electron Devices, 54, (2007), 2762.
    [104] T. Y. Lin, L. M. Chen, S. C. Chang, T. S. Chin, "Electrical resistance switching in Ti added amorphous SiOx", Applied Physics Letters, 95, (2009), 162105.
    [105] L. M. Chen, T. Y. Lin, C. C. Chang, S. C. Chang, T. S. Chin, "Electrode effect on resistive switching of Ti-added amorphous SiOx films", Thin Solid Films, 518, (2010), 7352.
    [106] J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G. A. Sawatzky, M. T. Czyzyk, "Electronic structure of Cu_{2}O and CuO", Physical Review B, 38, (1988), 11322.
    [107] M. C. Biesinger, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, "Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn", Applied Surface Science, 257, (2010), 887.
    [108] H. H. Huang, W. C. Shih, C. H. Lai, "Nonpolar resistive switching in the Pt/MgO/Pt nonvolatile memory device", Applied Physics Letters, 96, (2010), 193505.
    [109] A. Bid, A. Bora, A. K. Raychaudhuri, "Temperature dependence of the resistance of metallic nanowires of diameter ⩾15nm: Applicability of Bloch-Grüneisen theorem", Physical Review B, 74, (2006), 035426.
    [110] C. Schindler, M. Weides, M. N. Kozicki, R. Waser, "Low current resistive switching in Cu-SiO2 cells", Applied Physics Letters, 92, (2008).
    [111] J. Yao, L. Zhong, Z. X. Zhang, T. He, Z. Jin, P. J. Wheeler, D. Natelson, J. M. Tour, "Resistive Switching in Nanogap Systems on SiO2 Substrates", Small, 5, (2009), 2910.
    [112] S. P. Thermadam, S. K. Bhagat, T. L. Alford, Y. Sakaguchi, M. N. Kozicki, M. Mitkova, "Influence of Cu diffusion conditions on the switching of Cu-SiO2-based resistive memory devices", Thin Solid Films, 518, (2010), 3293.
    [113] R. Rosezin, E. Linn, L. Nielen, C. Kugeler, R. Bruchhaus, R. Waser, "Integrated Complementary Resistive Switches for Passive High-Density Nanocrossbar Arrays", Ieee Electron Device Letters, 32, (2011), 191.
    [114] Y. E. Syu, T. C. Chang, T. M. Tsai, G. W. Chang, K. C. Chang, Y. H. Tai, M. J. Tsai, Y. L. Wang, S. M. Sze, "Silicon introduced effect on resistive switching characteristics of WOX thin films", Applied Physics Letters, 100, (2012).
    [115] L. P. Ma, J. Liu, Y. Yang, "Organic electrical bistable devices and rewritable memory cells", Applied Physics Letters, 80, (2002), 2997.
    [116] P. Y. Lai, J. S. Chen, "Electrical bistability and charge transport behavior in Au nanoparticle/poly(N-vinylcarbazole) hybrid memory devices", Applied Physics Letters, 93, (2008), 153305.
    [117] J. S. Huang, C. Y. Lee, T. S. Chin, "Forming-free bipolar memristive switching of ZnO films deposited by cyclic-voltammetry", Electrochimica Acta, (2013).
    [118] N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, K. Koumoto, "Low-temperature fabrication of light-emitting zinc oxide micropatterns using self-assembled monolayers", Advanced Materials, 14, (2002), 418.
    [119] D. Wei, H. E. Unalan, D. Han, Q. Zhang, L. Niu, G. Amaratunga, T. Ryhanen, "A solid-state dye-sensitized solar cell based on a novel ionic liquid gel and ZnO nanoparticles on a flexible polymer substrate", Nanotechnology, 19, (2008), 424006.
    [120] C. C. Li, Z. F. Du, L. M. Li, H. C. Yu, Q. Wan, T. H. Wang, "Surface-depletion controlled gas sensing of ZnO nanorods grown at room temperature", Applied Physics Letters, 91, (2007), 032101.
    [121] K. C. Chang, T. M. Tsai, T. C. Chang, H. H. Wu, K. H. Chen, J. H. Chen, T. F. Young, T. J. Chu, J. Y. Chen, C. H. Pan, Y. T. Su, Y. E. Syu, C. W. Tung, G. W. Chang, M. C. Chen, H. C. Huang, Y. H. Tai, D. S. Gan, J. J. Wu, Y. Hu, S. M. Sze, "Low Temperature Improvement Method on Zn:SiO Resistive Random Access Memory Devices", Electron Device Letters, IEEE, 34, (2013), 511.
    [122] K.-H. Chen, R. Zhang, T.-C. Chang, T.-M. Tsai, K.-C. Chang, J. C. Lou, T.-F. Young, J.-H. Chen, C.-C. Shih, C.-W. Tung, Y.-E. Syu, S. M. Sze, "Hopping conduction distance dependent activation energy characteristics of Zn:SiO[sub 2] resistance random access memory devices", Applied Physics Letters, 102, (2013), 133503.
    [123] I. Hwang, M.-J. Lee, G.-H. Buh, J. Bae, J. Choi, J.-S. Kim, S. Hong, Y. S. Kim, I.-S. Byun, S.-W. Lee, S.-E. Ahn, B. S. Kang, S.-O. Kang, B. H. Park, "Resistive switching transition induced by a voltage pulse in a Pt/NiO/Pt structure", Applied Physics Letters, 97, (2010), 052106.
    [124] J. Bae, I. Hwang, Y. Jeong, S.-O. Kang, S. Hong, J. Son, J. Choi, J. Kim, J. Park, M.-J. Seong, Q. Jia, B. H. Park, "Coexistence of bi-stable memory and mono-stable threshold resistance switching phenomena in amorphous NbO[sub x] films", Applied Physics Letters, 100, (2012), 062902.
    [125] H. A. Atwater, A. Polman, "Plasmonics for improved photovoltaic devices", Nat Mater, 9, (2010), 205.
    [126] S. Maroie, G. Haemers, J. J. Verbist, "Surface oxidation of polycrystalline α(75%Cu/25%Zn) and β(53%Cu/47%Zn) brass as studied by XPS: Influence of oxygen pressure", Applications of Surface Science, 17, (1984), 463.
    [127] T. L. Barr, "Recent advances in x-ray photoelectron spectroscopy studies of oxides", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 9, (1991), 1793.
    [128] W.-Y. Chang, C.-A. Lin, J.-H. He, T.-B. Wu, "Resistive switching behaviors of ZnO nanorod layers", Applied Physics Letters, 96, (2010), 242109.
    [129] M. Adnan, C. Sébastien, W. Maciej, H. Stephen, L. Christophe, R. Richard, J. K. Anthony, "Electrically tailored resistance switching in silicon oxide", Nanotechnology, 23, (2012), 455201.
    [130] A. Olbrich, B. Ebersberger, C. Boit, "Conducting atomic force microscopy for nanoscale electrical characterization of thin SiO[sub 2]", Applied Physics Letters, 73, (1998), 3114.
    [131] K. Watanabe, N. Miura, "Magneto-optical spectra of excitons and Landau subbands in strained CdTe epitaxial films under high magnetic fields", Journal of Applied Physics, 88, (2000), 4245.
    [132] K. Shibuya, R. Dittmann, S. Mi, R. Waser, "Impact of defect distribution on resistive switching characteristics of Sr2TiO4 thin films", Advanced Materials, 22, (2010), 411.
    [133] X. Cao, X. M. Li, X. D. Gao, X. J. Liu, C. Yang, R. Yang, P. Jin, "All-ZnO-based transparent resistance random access memory device fully fabricated at room temperature", Journal of Physics D-Applied Physics, 44, (2011), 255104.
    [134] S. Kim, H. Moon, D. Gupta, S. Yoo, Y. K. Choi, "Resistive switching characteristics of sol-gel zinc oxide films for flexible memory applications", Ieee Transactions on Electron Devices, 56, (2009), 696.
    [135] C. J. Lan, H. Y. Cheng, R. J. Chung, J. H. Li, K. F. Kao, T. S. Chin, "Bi-doped ZnO layer prepared by electrochemical deposition", Journal of the Electrochemical Society, 154, (2007), D117.
    [136] S. Peulon, D. Lincot, "Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films", Advanced Materials, 8, (1996), 166.
    [137] K. N. Han, C. A. Li, M. P. Bui, X. H. Pham, G. H. Seong, "Control of ZnO morphologies on carbon nanotube electrodes and electrocatalytic characteristics toward hydrazine", Chemical Communications (Cambridge), 47, (2011), 938.
    [138] L. Vayssieres, "On the design of advanced metal oxide nanomaterials", International Journal of Nanotechnology, 1, (2004), 1.
    [139] F. Xu, Y. N. Lu, Y. Xie, Y. F. Liu, "Seed layer-free electrodeposition and characterization of vertically aligned ZnO nanorod array film", Journal of Solid State Electrochemistry, 14, (2010), 63.
    [140] M. Izaki, "Preparation of transparent and conductive zinc oxide films by optimization of the two-step electrolysis technique", Journal of the Electrochemical Society, 146, (1999), 4517.
    [141] M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S. Snider, D. R. Stewart, R. S. Williams, "Switching dynamics in titanium dioxide memristive devices", Journal of Applied Physics, 106, (2009), 074508.
    [142] W. Bala, A. Bakaluk, R. Siuda, "Investigations of ZnSe-ZnO structures, by using the electrooptical and Auger depth profile methods", Applied Physics a-Materials Science & Processing, 37, (1985), 231.
    [143] X. G. Yang, S. T. Liu, X. K. Ye, Y. Wu, S. S. Sheng, G. X. Xiong, "X-Ray photoelectron spectroscopy study of LaMn(1-x)Fe(x)O(3) (x=0-1) oxides", Acta Physico et Chimica Sinica, 11, (1995), 681.
    [144] L. G. Mar, P. Y. Timbrell, R. N. Lamb, "An XPS study of zinc-oxide thin-film growth on copper using zinc acetate as a precursor", Thin Solid Films, 223, (1993), 341.
    [145] A. Rose, "Space-charge-limited currents in solids", Physical Review, 97, (1955), 1538.
    [146] A. E. Rakhshani, "The role of space-charge-limited-current conduction in evaluation of the electrical-properties of thin Cu2O films", Journal of Applied Physics, 69, (1991), 2365.
    [147] Z. Fan, J. G. Lu, "Zinc oxide nanostructures: synthesis and properties", Journal of Nanoscience and Nanotechnology, 5, (2005), 1561.
    [148] S. A. Studenikin, N. Golego, M. Cocivera, "Carrier mobility and density contributions to photoconductivity transients in polycrystalline ZnO films", Journal of Applied Physics, 87, (2000), 2413.
    [149] C. Moreno, C. Munuera, S. Valencia, F. Kronast, X. Obradors, C. Ocal, "Reversible Resistive Switching and Multilevel Recording in La0.7Sr0.3MnO3 Thin Films for Low Cost Nonvolatile Memories", Nano Letters, 10, (2010), 3828.
    [150] A. Sawa, "Resistive switching in transition metal oxides", Materials Today, 11, (2008), 28.
    [151] J.-S. Huang, C.-Y. Lee, T.-S. Chin, "Forming-free bipolar memristive switching of ZnO films deposited by cyclic-voltammetry", Electrochimica Acta, 91, (2013), 62.
    [152] M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg, B. P. Andreasson, "Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory", Advanced Materials, 19, (2007), 2232.
    [153] J. C. Scott, L. D. Bozano, "Nonvolatile memory elements based on organic materials", Advanced Materials, 19, (2007), 1452.
    [154] W. Tang, D. C. Cameron, "Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process", Thin Solid Films, 238, (1994), 83.
    [155] M. E. Zvanut, S. Jeddy, E. Towett, G. M. Janowski, C. Brooks, D. Schlom, "An annealing study of an oxygen vacancy related defect in SrTiO[sub 3] substrates", Journal of Applied Physics, 104, (2008), 064122.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE