簡易檢索 / 詳目顯示

研究生: 徐子桓
Hsu, Tzu-Huan
論文名稱: 以檸檬酸修飾氧化鑭有效去除水中磷酸鹽
Effective Removal of Phosphate from Aqueous Solution Using Citric Acid Modified Lanthanum Oxide
指導教授: 吳劍侯
Wu, Chien-Hou
口試委員: 莊淳宇
Chuang, Chun-yu
郭俊廷
Kwok, Chun-ting
鄧金培
Deng, Jin-pei
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 79
中文關鍵詞: 優養化氧化鑭磷酸鹽檸檬酸單層吸附化學吸附擬二級動力學模式朗繆爾模型
外文關鍵詞: Eutrophication, Lanthanum oxide, Phosphate, Citric acid, Chemisorption, Pseudo-second-order kinetic model, Langmuir model, Monolayer adsorption
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從水和廢水中去除磷酸鹽是控制優養化的關鍵步驟,而吸附技術是其中最有效的處理過程。本研究合成了一系列不同鍛燒溫度 (300至1000℃)下的檸檬酸改質氧化鑭 (c-La2O3),並透過X射線繞射、N2吸附-脫附、動態光散射 (DLS)、熱重分析、X 射線光電子能譜 (XPS)、傅立葉轉換紅外光譜和高解析度穿透式電子顯微鏡 (HR-TEM)進行偵測。與原始La2O3相比,c-La2O3表現出更好的磷酸鹽吸附性質。吸附容量與pH值和鍛燒溫度成反比。在吸附動力學中,c-La2O3符合擬二級動力學模型,R2大於0.96,顯示c-La2O3與磷酸鹽之間的反應為化學吸附。 Langmuir模型可以更好地描述c-La2O3的吸附等溫曲線,顯示吸附過程是單層吸附。在pH 5條件下,300°C鍛燒的無晶形c-La2O3 (c-La-300)具有最高的比表面積,並擁有最高的最大吸附容量141 mg/g,與之相比c-La-800為79 mg/g,而原始La2O3為 43 mg/g。熱力學研究顯示,吸附反應為自發吸熱過程 (∆H0 = 1.02 kJ/mol, ∆S0 = 21 J/(mol K))。此外,在吸附過程中,氫氧根離子會釋放到溶液中,提高溶液的pH值,這可以透過H2PO4-、HPO42-或PO43-和c-La-300表面之羥基間的配位基交換描述。

    關鍵字:優養化、氧化鑭、磷酸鹽、檸檬酸、單層吸附、化學吸附、擬二級動力學模式、朗繆爾模型


    The removal of phosphate from water and wastewater is the key step to control eutrophication, and adsorption technology is one of the most effective treatment processes. In this study, a series of citric acid modified lanthanum oxides (c-La) under different calcination temperatures (300 to 1000 C) were synthesized and characterized by X-ray diffraction, N2 adsorption-desorption, dynamic light scattering (DLS), thermogravimetric analysis, Fourier transform infrared spectroscopy, and high-resolution transmission electron microscopy (HR-TEM). The c-La exhibited a better phosphate adsorption performance, as compared with pristine La2O3. The adsorption capacity was inversely correlated with pH and calcination temperature. In adsorption kinetics, c-La was fitted well in pseudo-second-order kinetic model with R2 larger than 0.96, suggesting that the reaction between c-La and phosphate is chemisorption. The adsorption isotherms of c-La could be better represented by Langmuir model, indicating that the adsorption process is a monolayer homogenous adsorption. At pH 5, the amorphous c-La sintered at 300C (c-La-300) had the highest specific surface area, and showed the greatest maximum adsorption capacity at 141 mg/g, comparing with the crystalline c-La sintered at 800C (c-La-800) at 79 mg/g and pristine La2O3 at 43 mg/g. The thermodynamic study indicated that the adsorption reaction was a spontaneous endothermic process with H = 3.52 kJ/mol and S = 21 J/(mol K). Furthermore, the hydroxyl ions would be released to the solution during adsorption process and increase the pH value of the solution, which could be described by the ligand exchange of hydroxyl groups on the surface of adsorbent between H2PO4-, HPO42-, or PO43-.

    Keywords: Eutrophication; Lanthanum oxide; Phosphate; Citric acid; Chemisorption; Pseudo-second-order kinetic model; Langmuir model; Monolayer adsorption

    摘要……..…………………………………………………………….………....……..I Abstract.……………………………………………………………...…….….……....II Acknowledgements..……………………….………………..……...…........……......III Contents..………………………………………………….…..……………........…..IV List of Figures …………………………………...…………….........……………......VI List of Tables…………………………………………………...…....……..………..IX Chapter 1 Introduction.………….…..……………….………...…...……....………….1 1.1 General Background..……………………………...….…..…….……………1 1.2 La2O3 Application...…………….………………..……..…..…...…………..3 1.3 Research Motivation.…………………………………………...…………….5 Chapter 2 Experimental Section……………………….…..………….……….………6 2.1 Chemicals and Solutions.………………………….…..……………………...6 2.2 Apparatus.…………………….…..…...…………..……………………….....7 2.3 Experimental Procedures..…………………...………………....…..….…......8 2.4 Phosphate Measurement.…………………...………………......….………....9 2.5 Phosphate Adsorption Experiments.…………………...…………………....11 2.5.1 Adsorption Isotherm.……………………………………..….…........11 2.5.1.1.1 Langmuir equation.….……………………………………...12 2.5.1.1.2 Freundlich equation…....………….……………………….. 14 2.5.2 Adsorption Kinetics .………….………………………………..…… 15 2.5.2.1 Pseudo-first order equation….....……………………….….....16 2.5.2.2 Pseudo-second order equation……………..…..….………….17 Chapter 3 Results and Discussion…..………………………………..………….….18 3.1 Characterization of the Adsorbents....………………..………………….......18 3.2 Effect of Solution pH on the Adsorption Capacity..…………………......…26 3.3 Adsorption Kinetics….……………………………………….......................30 3.4 Adsorption Isotherms and Thermodynamics....…………………………….37 3.5 Mechanism for Adsorption Enhancement.…………………………………..45 Chapter 4 Conclusion.……………………………….………………...………..…….52 Chapter 5 Future Work.……………………………………….……..…………...…53 5.1 Coexisting Anion………………………………………............…..………..53 5.2 Regeneration of Adsorbent……………………...…….….……………........54 5.3Application of the Continuous Flow Adsorption System...…………………..55 References…...……………………………………………………………………….56 Appendix 1 pH 3, pH 5, pH 7 and pH 10 adsorption capacity………….……...............72 The Author….………………………………..………………….………………...….79

    AbdEl-Salam, A. H.; Ewais, H. A.; Basaleh, A. S. Silver nanoparticles immobilized on the activated carbon as efficient adsorbent for removal of crystal violet dye from aqueous solutions. A kinetic study. J. Mol. Liq. 2017, 248, 833–841.

    Ahmed, F.; Afsar, M. Z.; Islam, M. S.; Kashem, M. A. Use of Linearized Versions of Langmuir Model to Study Phosphate Sorption Capacity of Soils. Curr. Trends Technol. Sci. 2014, 3, 395–403.

    Ahmed, S.; Ashiq, M. N.; Li, D.; Tang, P.; Leroux, F.; Feng, Y. Recent Progress on Adsorption Materials for Phosphate Removal. Recent Pat. Nanotechnol. 2019, 13, 3–16.

    Akhurst, D. J.; Jones, G.; Clark, M. W.; McConchie, D. M. Phosphate removal from aqueous solutions using neutralized bauxite refinery residues (Bauxsol TM). Environ. Chem. 2006, 3, 65–74.

    Almasri, D. A.; Saleh, N. B.; Atieh, M. A.; McKay, G.; Ahzi, S. Adsorption of phosphate on iron oxide doped halloysite nanotubes. Sci. Rep. 2019, 9, 3232–3245.

    Angkawijayaa, A. E.; Tran-Chuong, Y. N.; Ha, Q. N.; Tran-Nguyen, P. L.; Santoso, S. P.; Bundjaja, V.; Go, A. W.; Hsue, H.-Y.; Ju, Y.-H. Studies on the performance of functionalized Fe3O4 as phosphate adsorbent and assessment to its environmental compatibility. J. Taiwan Inst. Chem. Eng. 2022, 131, 104162–104174.

    Ataguba, C. O.; Brink, I. Application of isotherm models to combined filter systems for the prediction of iron and lead removal from automobile workshop stormwater runoff. Water SA. 2022, 48, 476–486.

    Böttger, S. A.; McClintock, J. B. The effects of chronic inorganic and organic phosphate exposure on bactericidal activity of the coelomic fluid of the sea urchin Lytechinus variegatus (Lamarck) (Echinodermata: Echinoidea). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2009, 150, 39–44.

    Bojari, H.; Malekzadeh, A.; Ghiasi, M.; Gholizadeh, A.; Azargohar, R.; Kumar Dalai, A. Effect of Citric Acid and Starch as Emulsifier on Phase Formation and Crystallite Size of Lanthanum Oxide Nanoparticles. Cryst. Res. Technol. 2013 1 ,1-8.

    Bonsdorff, E. Eutrophication: Early warning signals, ecosystem-level and societal responses, and ways forward. Ambio. 2021, 50, 753–758.

    Bozorgpour, F.; Ramandi, H. F.; Jafari, P.; Samadi, S.; Yazd, S. S.; Aliabadi, M. Removal of nitrate and phosphate using chitosan/Al2O3/Fe3O4 composite nanofibrous adsorbent: comparison with chitosan/Al2O3/Fe3O4 beads. Int. J. Biol. Macromol. 2016, 93, 557–565.

    Cendrowski, K.; Opała, K.; Mijowska, E. Carbonized Lanthanum-Based Metal-Organic Framework with Parallel Arranged Channels for Azo-Dye Adsorption. Nanomaterials. 2020, 10, 1053–1065.

    Chen, M.; Huo, C.; Li, Y.; Wang, J. Selective Adsorption and Efficient Removal of Phosphate from Aqueous Medium with Graphene–Lanthanum Composite. ACS Sustain. Chem. Eng. 2016, 4, 1296–1302.

    Chen, R.; Zhi, C.; Yang, H.; Bando, Y.; Zhang, Z.; Sugiur, N.; Golberg, D. Arsenic (V) adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes. J. Colloid Interface Sci. 2011, 359, 261–268.

    Choi, J.-W.; Choi, Y.-S.; Hong, S.-W.; Kim, D.-J.; Lee, S.-H. Effect of pH and Coexisting Anions on Removai of Phospiiate from Aqueous Soiutions by Inorganic-Based Mesostructures. Water Environ. Res. 2012, 84, 7–17.

    Edet, U. A.; Felebuegu, A. O. Kinetics, Isotherms, and Thermodynamic Modeling of the Adsorption of Phosphates from Model Wastewater Using Recycled Brick Waste. Processes. 2020, 8, 665–680.

    Esfandian, H.; Esfandian, N.; Rezazadeh, M. Modeling and Comparison of Optimized Isotherm Models for H2, N2, CO, CH4 and CO2 Adsorption Using Cuckoo Search Optimization Algorithm. Int. J. Eng. Trans. B: Appl. 2020, 33, 712–718.

    Eweida, B. Y.; Omer, A. M.; Tamer, T. M.; Soliman, H. A.-E. M.; Zaatot, A. A.; Mohy Eldin, M. S. Kinetics, isotherms and thermodynamics of oil spills removal by novel amphiphilic Chitosan-g-Octanal Schiff base polymer developed by click grafting technique. Polym. Bull. 2023, 80, 4813–4840.

    Fetene, Y.; Addis, T. Adsorptive Removal of Phosphate From Wastewater Using Ethiopian Rift Pumice: Batch Experiment. Air, Soil Water Res. 2020, 13, 1–12.

    Fu, H.-Y.; Yang, Y.-X.; Zhu, R.-L.; Liu, J.; Usman, M.; Chen, Q.-Z.; He, H.-P. Superior adsorption of phosphate by ferrihydrite-coated and lanthanum- decorated magnetite. J. Colloid Interface Sci. 2018, 530, 704–713.

    Genz, A.; Kornmüller, A.; Jekel, M. Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminum oxide and granulated ferric hydroxide. Water Res. 2004, 38, 3523–3530.

    Gong, R.; Ding, Y.; Liu, H.; Chen, Q.; Liu, Z. Lead biosorption and desorption by intact and pretreated spirulina maxima biomass. Chemosphere. 2005, 58, 125–130.

    Haghseresht, F.; Wang, S.; Do, D. D. A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters. Appl. Clay Sci. 2009, 46, 369–375.

    He, D.-S.; Chen, B-B..; Tang, Y.; Li, Q-Q..; Zhang, K-C..; Li, Z.-L.; Xu, C.-M. The enhanced adsorption properties of phosphorus from aqueous solutions using lanthanum modified synthetic zeolites. Green Process. Synth. 2023, 12, 20230106–2023118.

    He, Y.; Lin, H.; Dong, Y.; Wang, L. Preferable adsorption of phosphate using lanthanum-incorporated porous zeolite: Characteristics and mechanism. Appl. Surf. Sci. 2017, 426, 995–1004.

    He, Z.; Chen, J.; Lu, J.; Jiang, S.-Y.; Su, L.; Lee, C.-H.; Ruan, H.-D. Batch and Column Adsorption of Phosphorus by Modified Montmorillonite. Appl. Sci. 2022, 12, 5703–5717.

    Heisler, J.; Glibert, P. M.; Burkholder, J. M.; Anderson, D. M.; Cochlan, W.; Dennison, W. C.; Dortch, Q.; Gobler, C. J.; Heil, C. A.; Humphries, E.; Lewitus, A.; Magnien, R.; Marshall, H. G.; Sellner, K.; StockwelL, D. A.; Stoecker, D. K.; Suddleson, M. Eutrophication and Harmful Algal Blooms: A Scientific Consensus. Harmful Algae. 2008, 8, 3–13.

    Huang, W.-Y.; Li, D.; Zhu, Y.; Xu, K.; Li, J.-Q.; Han, B.-P.; Zhang, Y.-M. Phosphate adsorption on aluminum-coordinated functionalized macroporous–mesoporous silica: Surface structure and adsorption behavior. Mater. Res. Bull. 2013, 48, 4974–4978.

    Huang, Y.; Yang, J.; Keller, A. A. Removal of arsenic and phosphate from aqueous solution by metal (Hydr-)oxide coated sand. ACS Sustain. Chem Eng. 2014, 2, 1128–1138.

    Inal, I. I. G.; Holmes, S. M.; Banford, A.; Aktas, Z. The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea. Appl. Surf. Sci. 2015, 357, 696–703.

    Jeppu, G. P.; Clement, T. P. A. Modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects. J. Contam. Hydrol. 2012, 130, 46–53.

    Jia, X.-X.; Zhao, X.; Zhou, Y.-T.; Li, F.; Liu, W.; Huang, Y.-M.; Zhang, H.-C.; Ma, J.-X.; Hu, G.-Z. Tri-functional lanthanum-based biochar for efficient phosphorus recovery, bacterial inhibition, and soil fertility enhancement. Biochar. 2023, 5,16–33.

    Jiang, D.; Amano, Y.; Machida, M. Removal and recovery of phosphate from water by a magnetic Fe3O4@ASC adsorbent. J. Environ. Chem. Eng. 2017, 5, 4229–4238.

    Jiang, H.; Chen, P.; Luo, S.; Tu, X.; Cao, Q.; Shu, M. Synthesis of novel nanocomposite Fe3O4/ZrO2/chitosan and its application for removal of nitrate and phosphate. Appl. Surf. Sci. 2013, 284, 942–949.

    Jurado-Davila, V.; De Oliveira, J. T.; Estumano, D.; Feris, L. A. Fixed-bed column for phosphate adsorption combining experimental observation, mathematical simulation, and statistics: Classical and Bayesian. Sep. Purif. Technol. 2023, 317, 123914.

    Kim, K.-M.; Kim, D.-J.; Kim, T.-Y.; Kim, B.-G.; Ko, D.-H.; Lee, J.-S.; Han, Y.-J.; Ji, C.-J.; Hyon, B.-N. Synthesis of mesoporous lanthanum hydroxide with enhanced adsorption performance for phosphate removal. RSC Adv. 2019, 9, 15257–15305.

    Kuroki, V.; Bosco, G. E.; Fadini, P. S.; Mozeto, A. A.; Cestari, A. R.; Carvalho, W. A. Use of a La(III)-modified bentonite for effective phosphate removal from aqueous media. J. Hazard. Mater. 2014, 274, 124–131.

    Lalley, J.; Han, C.; Mohan, G. R.; Dionysiou, D. D.; Speth, T. F.; Garlandd, J.; Nadagouda, M. N. Phosphate removal using modified Bayoxide® E33 adsorption media. Environ. Sci. Water Res. Technol. 2015, 1, 96–107.

    Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403.

    Lee, T. Accelerated phosphorus removal using sulfate-coated expanded vermiculite. Water SA. 2020, 46, 615–626.

    Li, S.-Q.; Zhuang, Y.; Li, G.-Z.; Zou, T.-R.; Wang, H.-B.; Tan, W.; Yang, M. Selective adsorption and efficient removal of phosphate using lanthanum-modified mesoporous silica from aqueous solutions. Desalin. Water Treat. 2021, 241, 159–170.

    Li, Y.; Gao, B.; Wu, T.; Wang, B.; Li, X. Adsorption Properties of Aluminum Magnesium Mixed Hydroxide for the Model Anionic Dye Reactive Brilliant Red K-2BP. J. Hazard. Mater. 2009, 164, 1098−1104.

    Liu, J.; Wan, L.; Zhang, L.; Zhou, Q. Effect of pH, ionic strength, and temperature on the phosphate adsorption onto lanthanum-doped activated carbon fiber. J. Colloid Interface Sci. 2011, 364, 490–496.

    Liu, J.; Wan, L.; Zhang, L.; Zhou, Q. Effect of pH, ionic strength, and temperature on the phosphate adsorption onto lanthanum-doped activated carbon fiber. J. Colloid Interface Sci. 2011, 364, 490–496.

    Lou, W.; Dong, Y.; Zhang, H.-L.; Jin, Y.-F.; Hu, X.-H.; Ma, J.-F.; Liu, J.-S.; Wu, G. Preparation and Characterization of Lanthanum-Incorporated Hydroxyapatite Coatings on Titanium Substrates. Int. J. Mol. Sci. 2015, 16, 21070–21086.

    Lu, C.-Y.; Klementiev, K.; Hassenkam, T.; Qian, W.-J.; Ai, J.; Chr, H.; Hansen, B. High affinity lanthanum doped iron oxide nanosheets for phosphate removal. J. Chem. Eng. 2021, 442, 130009–130020.

    Luo, Q.; Ding, N.; Liu, Y.-F.; Zhang, H.-L.; Fang, Y.; Yin, L.-H. Metabolic Engineering of Microorganisms to Produce Pyruvate and Derived Compounds. Molecules. 2023, 28, 1418–1440.

    Mao, Y.-P.; Yue, Q.-Y. Kinetic Modeling of Phosphate Adsorption by Preformed and In situ formed Hydrous Ferric Oxides at Circumneutral pH. Sci. Rep. 2016, 6, 35292–35303.

    McCright, C.; McCoy, J.; Robbins, N.; Comfort, S. Slow-Release Lanthanum Effectively Reduces Phosphate in Eutrophic Ponds without Accumulating in Fish. Environments. 2023, 10, 20–32.

    Muñoz, H. J.; Korili, S. A.; Gil, A. Progress and Recent Strategies in the Synthesis and Catalytic Applications of Perovskites Based on Lanthanum and Aluminum. Materials. 2022, 15, 3288–3332.

    Nagul, E.A.; McKelvie, I.D.; Worsfold, P.; Kolev, S.D. The molybdenum blue reaction for the determination of orthophosphate revisited: Opening the black box. Anal. Chim. Acta. 2015, 890, 60-82.

    Nazarian, R.; Desch, R. J.; Thiel, S. W. Kinetics and equilibrium adsorption of phosphate on lanthanum oxide supported on activated carbon. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 624, 126813–126824.

    Ng, K.-C.; Burhan, M.; Shahzad, M. W.; Ismail, A. B. A. Universal Isotherm Model to Capture Adsorption Uptake and Energy Distribution of Porous Heterogeneous Surface. Sci. Rep. 2017, 7 ,10634–10645.

    Nyakairu, G. W.; Usman, M. O.; Ntale, M. Adsorption of Phosphate by Synthesized Silver/Calcium Oxide-Activated Carbon Nanocomposite. Adv. Environ. Res. 2023, 4, 1–21.

    Ofomaja, A. E.; Ho, Y. S. Equilibrium sorption of anionic dye from aqueous solution by palm kernel fibre as sorbent. Dyes Pigm. 2007, 74, 60–66.

    Park, J.-H.; Hwang, S.-W.; Lee, S.-L.; Lee, J.-H.; Seo, D.-C. Sorption behavior of phosphate by fly ash discharged from biomass thermal power plant. Appl. Biol. Chem. 2021, 64, 43–52.

    Phawachalotorn, C.; Wongniramaikul, W.; Taweekarn, T.; Kleangklao, B.; Pisitaro, W.; Limsakul, W.; Sriprom, W.; Towanlong, W.; Choodum, A. Continuous Phosphate Removal and Recovery Using a Calcium Silicate Hydrate Composite Monolithic Cryogel Column. Polymers. 2023, 15, 539–555.

    Prato, J. G.; Millán, F. C.; González, L. C.; Ríos, A. C.; López, E.; Ríos, I.; Navas, S.; Márquez, A.; Carrero, J. C.; Díaz, J. I. Water. 2022, 14, 2454–2472.

    Predoana, L.; Jitianu, A.; Malic, B.; Zaharescu, M. Study of the Gelling Process in the La-Co-Citric Acid System. J. Am. Ceram. Soc. 2012, 95, 1068–1076.

    Ramirez, P. D.; Lee, C.-D.; Fedderwitz, R.; Clavijo, A. R.; Barbosa, D. P. P.; Julliot, M.; Van-Ramos, J.; Begin, D.; Calve, S. L.; Zaloszyc, A.; Choquet, P.; Soler, M. A. G.; Mertz, D.; Kofinas, P.; Piao, Y.-Z.; Sylvie, B.-C. Phosphate Capture Enhancement Using Designed Iron Oxide-Based Nanostructures. Nanomaterials. 2023, 13, 587–609.
    Rashid, M.; Price, N. T.; Gracia-Pinilla, M. A.; O’shea, K. E. Effective removal of phosphate from aqueous solution using humic acid coated magnetite nanoparticles. Water Res. 2017, 123, 353–360.

    Rashid, M.; Price, N. T.; Gracia-Pinilla, M. A.; O’shea, K. E. Effective removal of phosphate from aqueous solution using humic acid coated magnetite nanoparticles. Water Res. 2017, 123, 353–360.

    Revellamea, E. D.; Fortelab, D. L.; Sharpb, W.; Hernandezb, R.; Zappib, M. E. Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Clean Eng. Technol. 2020, 1, 100032–10045.

    Riza, M.; Ehsan, M. N.; Pervez, M. N.; Khyum, M. M. O.; Cai, Y.-J.; Naddeo, V. Control of eutrophication in aquatic ecosystems by sustainable dredging: Effectiveness, environmental impacts, and implications. Case Stud. Chem. Environ. Eng. 2023, 7, 100297–100307.

    Seidel, L.; Broman, E.; Turner, S.; Ståhle, M.; Dopson, M. Interplay between eutrophication and climate warming on bacterial communities in coastal sediments differs depending on water depth and oxygen history. Sci. Rep. 2021, 11, 23384–23396.

    Shukla, A.; Zhang, Y.-H.; Dubey, P.; Margrave, J. L.; Shukla, S. S. The role of sawdust in the removal of unwanted materials from water. J. Hazard. Mater. 2022, 95, 137–152.

    Stachelek, J.; Ford, C.; Kincaid, D.; King, K.; Miller, H.; Nagelkirk, R. The National Eutrophication Survey: lake characteristics and historical nutrient concentrations. Earth Syst. Sci. 2017, 18, 52–63.

    Sun, E.; Zhang, Y.; Xiao, Q.; Li, H.; Qu, P.; Yong, C.; Wang, B.; Feng, Y.; Huang, H.; Yang, L.; Hunter, C. Formable porous biochar loaded. Biochar with La-Fe(hydr)oxides/montmorillonite for efficient removal of phosphorus in wastewater: process and mechanisms. Biochar. 2022, 4, 53–72.

    Tazik, M.; Dehghani, M. H.; Yaghmaeian, K.; Nazmara, S.; Salari, M.; Mahvi, A. H.; Nasseri, S.; Soleimani, H.; Karri, R. R. 4‐Chlorophenol adsorption from water solutions by activated carbon functionalized with amine groups: response surface method and artificial neural networks. Sci. Rep. 2023, 13, 7831–7850.

    Tian, S.; Jiang, P.; Ning, P.; Su, Y. Enhanced adsorption removal of phosphate from water by mixed lanthanum/aluminum pillared montmorillonite. Chem. Eng. J. 2009, 151, 141–148.

    Tran, H. N. Applying Linear Forms of Pseudo-Second-Order Kinetic Model for Feasibly Identifying Errors in the Initial Periods of Time-Dependent Adsorption Datasets. Water. 2023, 15, 1231–1245.

    Trinh, V. T.; Nguyen, T. M. P.; Huu, T. V.; Hoang, L. P.; Tien, V. N.; HA, L. T.; VU, X. H.; Pham, T. T.; Nguyen, T. N.; Quang, N. V.; Nguyen, X. C. Phosphate Adsorption by Silver nanoparticles-Loaded Activated carbon derived from tea Residue. Sci. Rep. 2020, 10, 3634–3647.

    Vigdorowitsch, M.; Pchelintsev, A.; Tsygankova, L.; Tanygina, E. Freundlich Isotherm: An Adsorption Model Complete Framework. Appl. Sci. 2021, 11, 8078–8085.

    Wang, F.; Liu, D.; Zheng, P.; Ma, X. Synthesis of rectorite/Fe3O4-CTAB composite for the removal of nitrate and phosphate from water. J. Ind. Eng. Chem. 2016, 41,165–174.

    Wang, H.; Li, Q.; Xu, J. Climate Warming Does Not Override Eutrophication, but Facilitates Nutrient Release from Sediment and Motivates Eutrophic Process. Microorganisms. 2023, 11, 910–928.

    Wang, Y.; Guo, M.; Li, X.; Liu, G.; Hua, Y.; Zhao, J.; Huguet, A.; Li, S. Shifts in microbial communities in shallow lakes depending on trophic states: Feasibility as an evaluation index for eutrophication. Ecol. Indic. 2022, 136, 108691–108702.

    Wei, X.; Miao, J.; Lv, Z.; Wan, X.; Zhang, N.; Zhang, R.; Peng, S. Phosphate Adsorption onto an Al-Ti Bimetal Oxide Composite in Neutral Aqueous Solution: Performance and Thermodynamics. Appl. Sci. 2022, 12, 2309–2328.

    Xia, S.; Liang, S.; Qin, Y.; Chen, W.; Xue, B.; Zhang, B.; Xu, G. Significant Improvement of Adsorption for Phosphate Removal by Lanthanum-Loaded Biochar. ACS Omega. 2023, 8, 24853−24864.

    Xie, J.; Wang, Z.; Fang, D.; Li, C.; Wu. D. Green synthesis of a novel hybrid sorbent of zeolite/lanthanum hydroxide and its application in the removal and recovery of phosphate from water. J Colloid Interface Sci. 2014, 423, 13–19.

    Xu, X.; Li, R.; Chen, J.; Yang, J.; Wu, Y.; Liu, J.; Huang, Y.-G.; Chen, S.; Ye, X.; Wang, W. Enhancing the Phosphate Adsorption of a Polyallylamine Resin in Alkaline Environments by Lanthanum Oxalate Modification. ACS Omega. 2022, 7, 19743−19753.

    Yan, L.-G.; Xu, Y.-Y.; H.-Q. Yu.; Xin, X.-D.; Wei, Q.; Du, B. Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites. J. Hazard. Mater. 2010, 179, 244–250.

    Yan, L.-G.; Yang, K.; Shan, R.-R.; Yan, T.; Wei, J.; Yu, S.-J; Yu, H.-Q.; Du, B. Kinetic, isotherm and thermodynamic investigations of phosphate adsorption onto coreshell Fe3O4@ LDHs composites with easy magnetic separation assistance. J. Colloid Interface Sci. 2015 ,448, 508–516.

    Yang, J.; Yuan, P.; Chen H.-Y.; Zou, J.; Yuan, Z.; Yu, C. Rationally designed functional macroporous materials as new adsorbents for efficient phosphorus removal. J. Mater. Chem. 2012, 22, 9983–9991.

    Yang, J.; Zhou, L.; Zhao, L.; Zhang, H.; Yin, J.; Wei, J.; Qian, K.; Wang, Y.; Yu, C. A designed nonporous material for phosphate removal with high efficiency. J. Mater. Chem. 2011, 21, 2489–2497.

    Yang, Y.; Koh, K.-Y.; Li, R.; Zhang, H.; Yan, Y.; Chen, J. P. An innovative lanthanum carbonate grafted microfibrous composite for phosphate adsorption in wastewater. J. Hazard. Mater. 2020, 392, 121952–121964.

    Ye, H.; Chen, F.; Sheng, Y. Q.; Sheng, G. Adsorption of phosphate from aqueous solution onto modified palygorskites. Sep. Purif. Technol. 2006, 50, 283–290.

    Yin, Y.; Xu, G.; Li, L.; Xu, Y.; Zhang, Y.; Liu, C.; Zhang, Z. Fabrication of Ceramsite Adsorbent from Industrial Wastes for the Removal of Phosphorus from Aqueous Solutions. J. Chem. 2020, 13, 803696–803709.

    Yu, Y.; Chen, J. P. Key factors for optimum performance in phosphate removal from contaminated water by a Fe-Mg-La tri-metal composite sorbent. J Colloid Interface Sci. 2015, 445, 303–311.

    Zamparas, M.; Drosos, M.; Georgiou, Y.; Deligiannakis, Y.; Zacharias, I. A novel bentonite-humic acid composite material Bephos™ for removal of phosphate and ammonium from eutrophic waters. Chem. Eng. J. 2013, 225, 43–51.

    Zamparas, M.; Glanni, A.; Stathi, P.; Deligiannakis, Y. Removal of phosphate from natural waters using innovative modified bentonites. Appl. Clay Sci. 2012, 63, 101–106.

    Zhang, T.; Wang, X.; Jin, X. Variations of alkaline phosphatase activity and P fractions in sediments of a shallow Chinese eutrophic lake (Lake Taihu). Environ. Pollut. 2007, 150, 288-294.

    Zhang, Y.-Y.; Pan, B.-C.; Shan, C.; Gao, X. Enhanced Phosphate Removal by Nanosized Hydrated La(III) Oxide Confined in Cross-linked Polystyrene Networks. Environ. Sci. Technol. 2016, 50, 1447–1454.

    Zheng, D.-Y.; Yao, R.-B.; Sun, C.-X.; Zheng, Y.-H.; Liu, C. Highly Efficient Low-Concentration Phosphate Removal from Effluents by Recoverable. La(OH)3/Foamed Nickel Adsorbent. ACS Omega. 2021, 6, 5399−5407.

    Zhi, Y.; Zhang, C.-H.; Hjorth, R.; Baun, A.; Duckworth, O. W.; Call, D. F.; Knappe, D. R. U.; Jones, J. L.; Grieger, K. Emerging lanthanum (III)-containing materials for phosphate removal from water: A review towards future developments. Environ. Int. 2020, 145, 106115–106127.

    Zhu, Y.-R.; Yue, X.-M.; Xie, F.-Z. Adsorptive removal of phosphate by a Fe–Mn–La tri-metal composite sorbent: Adsorption capacity, influence factors, and mechanism. Adsorp. Sci. Technol. 2020, 38, 254–270.

    QR CODE