簡易檢索 / 詳目顯示

研究生: 吳毓崇
Wu, Yu-Chung
論文名稱: 以硼酸於鹼性條件進行木質素化學修飾之計算研究
A Computational Study of the Chemical Modification of Lignin by Boric Acid under the Alkaline Condition
指導教授: 游靜惠
Yu, Chin-Hui
口試委員: 陳益佳
Chen, I-Chia
周佳駿
Chou, Chia-Chun
楊小青
Yang, Hsiao-Ching
蔡旻燁
Tsai, Min-Yeh
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 222
中文關鍵詞: 木質素硼酸密度泛函計算綠色化學化學修飾反應機制
外文關鍵詞: lignin, boric acid, DFT computation, green chemistry, chemical modification, reaction mechanism
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用密度泛函理論以硼酸與水楊醇陰離子之酯化反應模擬硼酸與木質素反應生成無機硼酸雙酯的反應過程,分別探討以單酯為中間產物之反應機制,及不以單酯為中間產物之反應機制,並比較各機制之能量分布曲線。對於硼酸以兩個硼氧鍵先與同一個木質素區塊接合再以兩個硼氧鍵與另一個木質素區塊接合以完成交叉鏈接的反應過程而言,由於中間產物的硼氧鍵斷裂幾乎為吸熱反應,為反應是否順利進行之關鍵因素。在各種硼氧鍵斷裂路徑中,以被鈉離子酸化的水分子提供質子使硼氧鍵斷裂所需的能量為最低。由於木質素羥甲基反應性較酚基高,木質素在含單酯的反應機制中應由羥甲基先與硼酸反應。
    對於硼酸以兩個硼氧鍵個別先與兩個不同的木質素區塊接合再以兩個硼氧鍵完成交叉鏈接的反應過程,木質素的酚基若先反應,其能量分布曲線顯示沒有過渡態,顯示在無單酯作為中間產物的反應機制中,木質素的酚基反而比羥甲基更有動力學優勢。某些半交叉鏈接中間產物在進行自身硼氧鍵斷裂時所需自由能比無機硼酸單酯低。若能確保不含單酯之反應機制之半交叉鏈接中間產物之生成,則不含單酯之反應機制也可以是生成無機硼酸雙酯的反應機制。
    四羥基硼酸根陰離子與水楊醇陰離子的反應機制之能量分布曲線指出四羥基硼酸根陰離子與木質素反應時會遭遇極高的能障,故在木質素與硼酸的反應中可以排除四羥基硼酸根陰離子與木質素反應的可能性。


    In this study, the reaction between boric acid and salicyl alcohol anion (as model compound) has been studied by DFT to explore the reaction between boric acid and lignin forming the anionic borate diester. For the mechanisms with anionic borate monoesters as intermediates, the cleavage of B–O bond is endothermic. The cleavage of B–O bond dominates the reaction with anionic borate monoesters as intermediates, and it can absorb the least free energy by the assistance of the deprotonation of the acidified water molecule by sodium cation. The hydroxymethyl group of lignin shows
    better reactivity with boric acid than the phenolic oxygen of lignin.
    For the mechanisms without anionic borate monoesters as intermediates, the energy profile shows no transition states if the phenolic oxygens of lignin react with boric acid first. The phenolic oxygens of lignin show better reactivity than the hydroxymethyl groups of lignin in these mechanisms. Some half-crosslinking intermediates of these mechanisms require less free energy than the anionic borate monoester for the cleavage of B–O bond. The mechanisms without anionic borate monoesters as intermediates can be used to form anionic borate diesters if the high energy required for the formation of the half-crosslinking intermediates of these mechanisms can be handled.
    The probability for the reaction between the tetrahydroxyborate anion and lignin is low due to the extremely high barriers observed in the energy profile.

    中文摘要 i Abstract ii 誌謝 iv 目錄 v 圖目錄 ix 表目錄 xi 第一章 緒論 1 第二章 密度泛函理論與結構最佳化 6 2.1 密度泛函理論 6 2.1.1 密度泛函理論簡介 6 2.1.2 各式泛函簡介 8 2.2 結構最佳化 13 2.2.1 結構最佳化的定義 13 2.2.2 極小值結構最佳化 13 2.2.3 過渡態結構最佳化 17 2.2.3.1 過渡態初猜結構之搜尋 17 2.2.3.2 以初猜結構進行過渡態結構之最佳化計算 18 2.2.3.3 過渡態結構之確認 19 第三章 硼酸與木質素形成無機硼酸雙酯之含單酯反應機制探討 22 3.1 前言 22 3.2 反應機制與計算方法 24 3.2.1 反應錯合體之模型建構 24 3.2.2 反應機制之介紹 26 3.2.2.1 BAA機制 26 3.2.2.2 BAB機制 33 3.2.2.3 BAA2機制 39 3.2.2.4 BAB2機制 44 3.2.3 反應機制之能量分布曲線之建構流程 49 3.2.4 計算軟體與計算條件之設定 51 3.3 結果與討論 52 3.3.1 木質素之酚基與羥甲基對硼酸分子形成硼氧鍵之反應性比較 52 3.3.1.1 BAA機制 52 3.3.1.2 BAB機制 56 3.3.1.3 BAA與BAB機制之能量分布曲線之比較 62 3.3.2 中間產物之羥基協助自身硼氧鍵斷裂之反應機制探討 63 3.3.2.1 BAA2機制 63 3.3.2.2 BAB2機制 68 3.4 結論 71 第四章 硼酸與木質素形成無機硼酸雙酯之其他反應機制之探討 73 4.1 前言 73 4.2 反應機制與計算方法 75 4.2.1 反應錯合體之模型建構 75 4.2.2 反應機制之介紹 77 4.2.2.1 BAA3a機制 77 4.2.2.2 BAA3c機制 82 4.2.2.3 BAB3b機制 86 4.2.2.4 BAB3c機制 90 4.2.2.5 TBA機制 94 4.2.3 搜尋反應機制之能量分布曲線之計算流程 100 4.2.4 計算軟體與計算條件之設定 101 4.3 結果與討論 101 4.3.1 硼酸分子與木質素反應之無單酯機制探討 101 4.3.1.1 BAA3a機制 101 4.3.1.2 BAA3c機制 104 4.3.1.3 BAB3b機制 107 4.3.1.4 BAB3c機制 111 4.3.2 以四羥基硼酸根陰離子取代硼酸與木質素反應之機制 114 4.4 結論 117 第五章 總結 119 參考文獻 121 附錄 128 A.1 M06/6-31+G(d,p)//M06/6-31G(d,p)計算層級之測試 128 A.2 各機制能量分布曲線之過渡態之最佳化結構數據 133 A.3 各機制之反應物、中間產物與產物之最佳化結構數據 187 A.4 溶劑相關物種之最佳化結構數據 218 A.5 各機制之反應物、中間產物、產物、過渡態及溶劑相關物種之 原始能量數據 220

    [1] V. M. Roberts, V. Stein, T. Reiner, A. Lemonidou, X. Li, J. A. Lercher, Chem. Eur. J. 2011, 17, 5939-5948.
    [2] A. Toledano, L. Serrano, J. Labidi, Fuel 2014, 116, 617-624.
    [3] C. Chen, D. X. Jin, X. P. Ouyang, L. S. Zhao, X. Q. Qiu, F. R. Wang, Fuel 2018, 223, 366-372.
    [4] C.-L. Chio, M. S., W.-S. Q., Renew. Sustain. Energy Rev. 2019, 107, 232-249.
    [5] W. Schutyser, T. Renders, S. Van den Bosch, S. F. Koelewijn, G. T. Beckham, B. F. Sels, Chem. Soc. Rev. 2018, 47, 852-908.
    [6] S.-C. Qi, J.-I. Hayashi, S. Kudo, L. Zhang, Green Chem. 2017, 19, 2636-2645.
    [7] T. Lankau, C.-H. Yu, Green Chem. 2016, 18, 1590-1596.
    [8] A. Toledano, L. Serrano, J. Labidi, J. Chem. Technol. Biotechnol. 2012, 87, 1593-1599.
    [9] S. K. Pradhan, I. Chakraborty, B. B. Kar, Int. J. Sci. Environ. Technol. 2015, 4, 183-189.
    [10] L. D. Antonino, J. R. Gouveia, R. R. de Sousa Júnior, G. E. Garcia, L. C. Gobbo, L. B. Tavares, D. J. dos Santos, Molecules 2021, 26, 2131.
    [11] A. V. Maldhure, J. D. Ekhe, J. Thermoplast. Compos. Mater. 2015, 30, 625-645.
    [12] J. R. Gouveia, G. E. S. Garcia, L. D. Antonino, L. B. Tavares, D. J. dos Santos, Molecules 2020, 25, 2513.
    [13] J. F. Zhang, A. Koubaa, D. Xing, W. Y. Liu, Q. W. Wang, X. M. Wang, H. G. Wang, Mater. Des. 2020, 191, 108589.
    [14] J. F. Zhang, A. Koubaa, D. Xing, H. G. Wang, Y. G. Wang, W. Y. Liu, Z. J. Zhang, X. M. Wang, Q. W. Wang, Bioresour. Technol. 2020, 312, 123586.
    [15] P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864-B871.
    [16] W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133-A1138.
    [17] J. P. Perdew, K. Schmidt, AIP Conf. Proc. 2001, 577, 1-20.
    [18] A. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
    [19] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 1992, 46, 6671-6687.
    [20] A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100.
    [21] J. M. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Lett. 2003, 91, 146401.
    [22] V. N. Staroverov, G. E. Scuseria, J. M. Tao, J. P. Perdew, J. Chem. Phys. 2003, 119, 12129-12137.
    [23] A. D. Becke, J. Chem. Phys. 1998, 109, 2092-2098.
    [24] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-241.
    [25] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868.
    [26] H. Stoll, C. M. E. Pavlidou, H. Preuss, Theor. Chim. Acta. 1978, 49, 143.
    [27] H. B. Schlegel, WIREs Comput. Mol. Sci. 2011, 1, 790-809.
    [28] B. A. Murtagh, R. W. H. Sargent, Comput. J. 1970, 13, 185-194.
    [29] C. G. Broyden, IMA J. Appl. Math 1970, 6, 76-90.
    [30] R. Fletcher, Comput. J. 1970, 13, 317-322.
    [31] D. Goldfarb, Math. Comp. 1970, 24, 23-26.
    [32] D. F. Shanno, Math. Comp. 1970, 24, 647-657.
    [33] J. E. Dennis, Schnabel, R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.
    [34] A. Banerjee, N. Adams, J. Simons, R. Shepard, J. Phys. Chem. 1985, 89, 52-57.
    [35] J. M. Bofill, J. Comput. Chem. 1994, 15, 1-11.
    [36] T. A. Halgren, W. N. Lipscomb, Chem. Phys. Lett. 1977, 49, 225-232.
    [37] S. Bell, J. S. Crighton, J. Chem. Phys. 1984, 80, 2464-2475.
    [38] A. Jensen, Theor. Chim. Acta 1983, 63, 269-290.
    [39] C. Y. Peng, H. B. Schlegel, Isr. J. Chem. 1993, 33, 449-454.
    [40] K. Fukui, Acc. Chem. Res. 1981, 14, 363-368.
    [41] H. P. Hratchian, H. B. Schlegel, J. Chem. Phys. 2004, 120, 9918-9924.
    [42] M. Page, J. M. McIver, J. Chem. Phys. 1988, 88, 922-935.
    [43] R. Bulirsch, J. Stoer, Numer. Math. 1964, 6, 413.
    [44] R. Bulirsch, J. Stoer, Numer. Math. 1966, 8, 1.
    [45] R. Bulirsch, J. Stoer, Numer. Math. 1966B, 8 93.
    [46] Y. Tsuzuki, Y. Kimura, Bull. Chem. Soc. Jpn. 1940, 15, 27-31.
    [47] A. J. Hubert, B. Hargitay, J. Dale, J. Chem. Soc. 1961, 931-936.
    [48] W. G. Henderson, M. J. How, G. R. Kennedy, E. F. Mooney, Carbohydr. Res. 1973, 28, 1-12.
    [49] G. R. Kennedy, M. J. How, Carbohydr. Res. 1973, 28, 13-19.
    [50] K. Yoshino, M. Kotaka, M. Okamoto, H. Kakihana, Bull. Chem. Soc. Jpn. 1979, 52, 3005-3009.
    [51] M. Van Duin, J. A. Peters, A. P. G. Kieboom, H. Van Bekkum, Tetrahedron 1984, 40, 2901-2911.
    [52] B. Wicklein, D. Kocjan, F. Carosio, G. Camino, L. Bergström, Chem. Mater. 2016, 28, 1985-1989.
    [53] M. Van Duin, J. A. Peters, A. P. G. Kieboom, H. Van Bekkum, J. Chem. Soc., Dalton Trans. 1987, 2051-2057.
    [54] M. E. Tuckerman, D. Marx, M. Parrinello, Nature 2002, 417, 925-929.
    [55] C. N. Rowley, B. Roux, J. Chem. Theory Comput. 2012, 8, 3526-3535.
    [56] J. J. Fifen, N. Agmon, J. Chem. Phys. 2019, 150, 034304.
    [57] M. Galib, M. D. Baer, L. B. Skinner, C. J. Mundy, T. Huthwelker, G. K. Schenter, C. J. Benmore, N. Govind, J. L. Fulton, J. Chem. Phys. 2017, 146, 084504.
    [58] J. A. White, E. Schwegler, G. Galli, F. Gygi, J. Chem. Phys. 2000, 113, 4668-4673.
    [59] T. Ikeda, M. Boero, K. Terakura, J. Chem. Phys. 2007, 126, 034501.
    [60] A. Bankura, V. Carnevale, M. L. Klein, J. Chem. Phys. 2013, 138, 014501.
    [61] J. Mähler, I. Persson, Inorg. Chem. 2012, 51, 425-438.
    [62] G. Pálinkás, T. Radnai, F. Hajdu, Z. Naturforsch. A. 1980, 35, 107-114.
    [63] H. Ohtaki, N. Fukushima, J. Solut. Chem. 1992, 21, 23-38.
    [64] T. Megyes, S. Bálint, T. Grósz, T. Radnai, I. Bakó, P. Sipos, J. Chem. Phys. 2008, 128, 044501.
    [65] A. Koizumi, K. Suzuki, M. Shiga, M. Tachikawa, J. Chem. Phys. 2011, 134, 031101.
    [66] A. Bino, D. Gibson, J. Am. Chem. Soc. 1981, 103, 6741-6742.
    [67] E. A. Price, W. H. Robertson, E. G. Diken, G. H. Weddle, M. A. Johnson, Chem. Phys. Lett. 2002, 366, 412-416.
    [68] W. H. Robertson, E. G. Diken, E. A. Price, J.-W. Shin, M. A. Johnson, Science 2003, 299, 1367-1372.
    [69] X.-C. Huang, B. J. Braams, S. Carter, J. M. Bowman, J. Am. Chem. Soc. 2004, 126, 5042-5043.
    [70] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
    [71] J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999-3094.
    [72] S. Miertuš, E. Scrocco, J. Tomasi, Chem. Phys. 1981, 55, 117-129.
    [73] S. Miertus̃, J. Tomasi, Chem. Phys. 1982, 65, 239-245.
    [74] J. L. Pascual-ahuir, E. Silla, I. Tuñon, J. Comput. Chem. 1994, 15, 1127-1138.
    [75] A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735-746.
    [76] U. C. Singh, P. A. Kollman, J. Comput. Chem. 1984, 5, 129-145.
    [77] B. H. Besler, K. M. Merz Jr., P. A. Kollman, J. Comput. Chem. 1990, 11, 431-439.
    [78] P. Raval, N. Thomas, L. Hamdouna, L. Delevoye, O. Lafon, G. N. Manjunatha Reddy, Langmuir 2023, 39, 5384-5395.
    [79] M. Rietjens, P. A. Steenbergen, Eur. J. Inorg. Chem. 2005, 2005, 1162-1174.

    QR CODE