研究生: |
吳毓崇 Wu, Yu-Chung |
---|---|
論文名稱: |
以硼酸於鹼性條件進行木質素化學修飾之計算研究 A Computational Study of the Chemical Modification of Lignin by Boric Acid under the Alkaline Condition |
指導教授: |
游靜惠
Yu, Chin-Hui |
口試委員: |
陳益佳
Chen, I-Chia 周佳駿 Chou, Chia-Chun 楊小青 Yang, Hsiao-Ching 蔡旻燁 Tsai, Min-Yeh |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 222 |
中文關鍵詞: | 木質素 、硼酸 、密度泛函計算 、綠色化學 、化學修飾 、反應機制 |
外文關鍵詞: | lignin, boric acid, DFT computation, green chemistry, chemical modification, reaction mechanism |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用密度泛函理論以硼酸與水楊醇陰離子之酯化反應模擬硼酸與木質素反應生成無機硼酸雙酯的反應過程,分別探討以單酯為中間產物之反應機制,及不以單酯為中間產物之反應機制,並比較各機制之能量分布曲線。對於硼酸以兩個硼氧鍵先與同一個木質素區塊接合再以兩個硼氧鍵與另一個木質素區塊接合以完成交叉鏈接的反應過程而言,由於中間產物的硼氧鍵斷裂幾乎為吸熱反應,為反應是否順利進行之關鍵因素。在各種硼氧鍵斷裂路徑中,以被鈉離子酸化的水分子提供質子使硼氧鍵斷裂所需的能量為最低。由於木質素羥甲基反應性較酚基高,木質素在含單酯的反應機制中應由羥甲基先與硼酸反應。
對於硼酸以兩個硼氧鍵個別先與兩個不同的木質素區塊接合再以兩個硼氧鍵完成交叉鏈接的反應過程,木質素的酚基若先反應,其能量分布曲線顯示沒有過渡態,顯示在無單酯作為中間產物的反應機制中,木質素的酚基反而比羥甲基更有動力學優勢。某些半交叉鏈接中間產物在進行自身硼氧鍵斷裂時所需自由能比無機硼酸單酯低。若能確保不含單酯之反應機制之半交叉鏈接中間產物之生成,則不含單酯之反應機制也可以是生成無機硼酸雙酯的反應機制。
四羥基硼酸根陰離子與水楊醇陰離子的反應機制之能量分布曲線指出四羥基硼酸根陰離子與木質素反應時會遭遇極高的能障,故在木質素與硼酸的反應中可以排除四羥基硼酸根陰離子與木質素反應的可能性。
In this study, the reaction between boric acid and salicyl alcohol anion (as model compound) has been studied by DFT to explore the reaction between boric acid and lignin forming the anionic borate diester. For the mechanisms with anionic borate monoesters as intermediates, the cleavage of B–O bond is endothermic. The cleavage of B–O bond dominates the reaction with anionic borate monoesters as intermediates, and it can absorb the least free energy by the assistance of the deprotonation of the acidified water molecule by sodium cation. The hydroxymethyl group of lignin shows
better reactivity with boric acid than the phenolic oxygen of lignin.
For the mechanisms without anionic borate monoesters as intermediates, the energy profile shows no transition states if the phenolic oxygens of lignin react with boric acid first. The phenolic oxygens of lignin show better reactivity than the hydroxymethyl groups of lignin in these mechanisms. Some half-crosslinking intermediates of these mechanisms require less free energy than the anionic borate monoester for the cleavage of B–O bond. The mechanisms without anionic borate monoesters as intermediates can be used to form anionic borate diesters if the high energy required for the formation of the half-crosslinking intermediates of these mechanisms can be handled.
The probability for the reaction between the tetrahydroxyborate anion and lignin is low due to the extremely high barriers observed in the energy profile.
[1] V. M. Roberts, V. Stein, T. Reiner, A. Lemonidou, X. Li, J. A. Lercher, Chem. Eur. J. 2011, 17, 5939-5948.
[2] A. Toledano, L. Serrano, J. Labidi, Fuel 2014, 116, 617-624.
[3] C. Chen, D. X. Jin, X. P. Ouyang, L. S. Zhao, X. Q. Qiu, F. R. Wang, Fuel 2018, 223, 366-372.
[4] C.-L. Chio, M. S., W.-S. Q., Renew. Sustain. Energy Rev. 2019, 107, 232-249.
[5] W. Schutyser, T. Renders, S. Van den Bosch, S. F. Koelewijn, G. T. Beckham, B. F. Sels, Chem. Soc. Rev. 2018, 47, 852-908.
[6] S.-C. Qi, J.-I. Hayashi, S. Kudo, L. Zhang, Green Chem. 2017, 19, 2636-2645.
[7] T. Lankau, C.-H. Yu, Green Chem. 2016, 18, 1590-1596.
[8] A. Toledano, L. Serrano, J. Labidi, J. Chem. Technol. Biotechnol. 2012, 87, 1593-1599.
[9] S. K. Pradhan, I. Chakraborty, B. B. Kar, Int. J. Sci. Environ. Technol. 2015, 4, 183-189.
[10] L. D. Antonino, J. R. Gouveia, R. R. de Sousa Júnior, G. E. Garcia, L. C. Gobbo, L. B. Tavares, D. J. dos Santos, Molecules 2021, 26, 2131.
[11] A. V. Maldhure, J. D. Ekhe, J. Thermoplast. Compos. Mater. 2015, 30, 625-645.
[12] J. R. Gouveia, G. E. S. Garcia, L. D. Antonino, L. B. Tavares, D. J. dos Santos, Molecules 2020, 25, 2513.
[13] J. F. Zhang, A. Koubaa, D. Xing, W. Y. Liu, Q. W. Wang, X. M. Wang, H. G. Wang, Mater. Des. 2020, 191, 108589.
[14] J. F. Zhang, A. Koubaa, D. Xing, H. G. Wang, Y. G. Wang, W. Y. Liu, Z. J. Zhang, X. M. Wang, Q. W. Wang, Bioresour. Technol. 2020, 312, 123586.
[15] P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864-B871.
[16] W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133-A1138.
[17] J. P. Perdew, K. Schmidt, AIP Conf. Proc. 2001, 577, 1-20.
[18] A. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
[19] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 1992, 46, 6671-6687.
[20] A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100.
[21] J. M. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Lett. 2003, 91, 146401.
[22] V. N. Staroverov, G. E. Scuseria, J. M. Tao, J. P. Perdew, J. Chem. Phys. 2003, 119, 12129-12137.
[23] A. D. Becke, J. Chem. Phys. 1998, 109, 2092-2098.
[24] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-241.
[25] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868.
[26] H. Stoll, C. M. E. Pavlidou, H. Preuss, Theor. Chim. Acta. 1978, 49, 143.
[27] H. B. Schlegel, WIREs Comput. Mol. Sci. 2011, 1, 790-809.
[28] B. A. Murtagh, R. W. H. Sargent, Comput. J. 1970, 13, 185-194.
[29] C. G. Broyden, IMA J. Appl. Math 1970, 6, 76-90.
[30] R. Fletcher, Comput. J. 1970, 13, 317-322.
[31] D. Goldfarb, Math. Comp. 1970, 24, 23-26.
[32] D. F. Shanno, Math. Comp. 1970, 24, 647-657.
[33] J. E. Dennis, Schnabel, R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.
[34] A. Banerjee, N. Adams, J. Simons, R. Shepard, J. Phys. Chem. 1985, 89, 52-57.
[35] J. M. Bofill, J. Comput. Chem. 1994, 15, 1-11.
[36] T. A. Halgren, W. N. Lipscomb, Chem. Phys. Lett. 1977, 49, 225-232.
[37] S. Bell, J. S. Crighton, J. Chem. Phys. 1984, 80, 2464-2475.
[38] A. Jensen, Theor. Chim. Acta 1983, 63, 269-290.
[39] C. Y. Peng, H. B. Schlegel, Isr. J. Chem. 1993, 33, 449-454.
[40] K. Fukui, Acc. Chem. Res. 1981, 14, 363-368.
[41] H. P. Hratchian, H. B. Schlegel, J. Chem. Phys. 2004, 120, 9918-9924.
[42] M. Page, J. M. McIver, J. Chem. Phys. 1988, 88, 922-935.
[43] R. Bulirsch, J. Stoer, Numer. Math. 1964, 6, 413.
[44] R. Bulirsch, J. Stoer, Numer. Math. 1966, 8, 1.
[45] R. Bulirsch, J. Stoer, Numer. Math. 1966B, 8 93.
[46] Y. Tsuzuki, Y. Kimura, Bull. Chem. Soc. Jpn. 1940, 15, 27-31.
[47] A. J. Hubert, B. Hargitay, J. Dale, J. Chem. Soc. 1961, 931-936.
[48] W. G. Henderson, M. J. How, G. R. Kennedy, E. F. Mooney, Carbohydr. Res. 1973, 28, 1-12.
[49] G. R. Kennedy, M. J. How, Carbohydr. Res. 1973, 28, 13-19.
[50] K. Yoshino, M. Kotaka, M. Okamoto, H. Kakihana, Bull. Chem. Soc. Jpn. 1979, 52, 3005-3009.
[51] M. Van Duin, J. A. Peters, A. P. G. Kieboom, H. Van Bekkum, Tetrahedron 1984, 40, 2901-2911.
[52] B. Wicklein, D. Kocjan, F. Carosio, G. Camino, L. Bergström, Chem. Mater. 2016, 28, 1985-1989.
[53] M. Van Duin, J. A. Peters, A. P. G. Kieboom, H. Van Bekkum, J. Chem. Soc., Dalton Trans. 1987, 2051-2057.
[54] M. E. Tuckerman, D. Marx, M. Parrinello, Nature 2002, 417, 925-929.
[55] C. N. Rowley, B. Roux, J. Chem. Theory Comput. 2012, 8, 3526-3535.
[56] J. J. Fifen, N. Agmon, J. Chem. Phys. 2019, 150, 034304.
[57] M. Galib, M. D. Baer, L. B. Skinner, C. J. Mundy, T. Huthwelker, G. K. Schenter, C. J. Benmore, N. Govind, J. L. Fulton, J. Chem. Phys. 2017, 146, 084504.
[58] J. A. White, E. Schwegler, G. Galli, F. Gygi, J. Chem. Phys. 2000, 113, 4668-4673.
[59] T. Ikeda, M. Boero, K. Terakura, J. Chem. Phys. 2007, 126, 034501.
[60] A. Bankura, V. Carnevale, M. L. Klein, J. Chem. Phys. 2013, 138, 014501.
[61] J. Mähler, I. Persson, Inorg. Chem. 2012, 51, 425-438.
[62] G. Pálinkás, T. Radnai, F. Hajdu, Z. Naturforsch. A. 1980, 35, 107-114.
[63] H. Ohtaki, N. Fukushima, J. Solut. Chem. 1992, 21, 23-38.
[64] T. Megyes, S. Bálint, T. Grósz, T. Radnai, I. Bakó, P. Sipos, J. Chem. Phys. 2008, 128, 044501.
[65] A. Koizumi, K. Suzuki, M. Shiga, M. Tachikawa, J. Chem. Phys. 2011, 134, 031101.
[66] A. Bino, D. Gibson, J. Am. Chem. Soc. 1981, 103, 6741-6742.
[67] E. A. Price, W. H. Robertson, E. G. Diken, G. H. Weddle, M. A. Johnson, Chem. Phys. Lett. 2002, 366, 412-416.
[68] W. H. Robertson, E. G. Diken, E. A. Price, J.-W. Shin, M. A. Johnson, Science 2003, 299, 1367-1372.
[69] X.-C. Huang, B. J. Braams, S. Carter, J. M. Bowman, J. Am. Chem. Soc. 2004, 126, 5042-5043.
[70] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
[71] J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999-3094.
[72] S. Miertuš, E. Scrocco, J. Tomasi, Chem. Phys. 1981, 55, 117-129.
[73] S. Miertus̃, J. Tomasi, Chem. Phys. 1982, 65, 239-245.
[74] J. L. Pascual-ahuir, E. Silla, I. Tuñon, J. Comput. Chem. 1994, 15, 1127-1138.
[75] A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735-746.
[76] U. C. Singh, P. A. Kollman, J. Comput. Chem. 1984, 5, 129-145.
[77] B. H. Besler, K. M. Merz Jr., P. A. Kollman, J. Comput. Chem. 1990, 11, 431-439.
[78] P. Raval, N. Thomas, L. Hamdouna, L. Delevoye, O. Lafon, G. N. Manjunatha Reddy, Langmuir 2023, 39, 5384-5395.
[79] M. Rietjens, P. A. Steenbergen, Eur. J. Inorg. Chem. 2005, 2005, 1162-1174.