研究生: |
張瓊予 Chang, Chiung-Yu |
---|---|
論文名稱: |
台灣華語音節缺罅引發之神經反應: 事件相關電位研究 Neural responses to syllable gaps in Taiwanese Mandarin: an event-related potential study |
指導教授: |
謝豐帆
Hsieh, Feng-Fan |
口試委員: |
張月琴
Chang, Yueh-Chin 林若芙 Lin, Jo-Fu |
學位類別: |
碩士 Master |
系所名稱: |
人文社會學院 - 語言學研究所 Institute of Linguistics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 104 |
中文關鍵詞: | 漢語音節缺罅 、事件相關電位 、音韻組合限制處理 、N2-P3複合成分 、晚期正向複合成分 、口語詞彙辨識 |
外文關鍵詞: | Mandarin syllable gaps, Event-related potential, phonotactic processing, N2-P3 complex, late positive complex, spoken word recognition |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討台灣華語中不存在的音節所引發之事件相關電位(event-related potential)。在漢語音節是由音段和聲調構成的假設之下,我檢視了兩類假定的音節:(一)音段缺罅(segmental gaps),即音段部分不管和哪一種聲調結合都不存在的組合,例如:*[ki1]、*[ki2]、*[ki3]、*[ki4]等;(二)聲調缺罅(tonal gaps),亦即換成其他聲調後可能存在的組合,例如:*[tau2](換成一聲後可變成實際存在的「刀」[tau1])。此外,我做了兩個運用不同任務的實驗,以探索音位組合限制的處理(phonotactic processing)是否取決於任務的類型。在實驗一中,受試者被動地聆聽關鍵刺激項。在約345毫秒時,聲調缺罅所造成的N2-P3複合成分(N2-P3 complex)的電位較音段缺罅和真詞所造成的電位為負。在實驗二中,受試者則是執行詞彙判斷任務(lexical decision task),此時音段缺罅所造成的晚期正向複合成分(late positive complex)的電位較其他類型的刺激項所造成的電位為負。這些結果顯示,在語音感知中,聲調和音段的資訊有不同的處理方式,而且相關的腦部反應取決於實驗時進行的任務。本文也討論了這些結果對於口語詞彙辨識(spoken word recognition)模型的理論意義,以及潛在的跨語言差異對實驗結果的影響。
This study investigates the event-related potentials evoked by nonexistent syllables in Taiwanese Mandarin. Under the assumption that a Mandarin syllable is comprised of segments and a lexical tone, two types of hypothetical syllables were examined: (1) segmental gaps, or combinations that are unattested regardless of their associated lexical tones (e.g., *[ki1], *[ki2], *[ki3], *[ki4]); and (2) tonal gaps, combinations that are unattested with certain lexical tones but not others (e.g., *[tau2]; cf. [tau1] ‘knife’). In addition, two experiments using different tasks were conducted to explore the task dependency of phonotactic processing. In Experiment 1, participants listened to the critical stimuli passively. The voltage of the N2-P3 complex around 345 ms was more negative for tonal gaps than segmental gaps and real words. On the other hand, when participants performed a lexical decision task in Experiment 2, the voltage of the late positive complex was more positive for segmental gaps than the other types of stimuli. These results suggest that tonal and segmental information are processed differently in speech perception and that the brain responses depend on the nature of the experimental task. Implications for competing models of spoken word recognition and potential cross-linguistic differences are also discussed.
Aaltonen, O., Hellström, Å., Peltola, M. S., Savela, J., Tamminen, H., & Lehtola, H. (2008). Brain responses reveal hardwired detection of native-language rule violations. Neuroscience letters, 444(1), 56-59. doi:10.1016/j.neulet.2008.07.095
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 48. doi:10.18637/jss.v067.i01
Boersma, P. W., David. (2018). Praat: doing phonetics by computer (Version 6.0.42). Retrieved from http://www.praat.org/
Bonte, M. L., Mitterer, H., Zellagui, N., Poelmans, H., & Blomert, L. (2005). Auditory cortical tuning to statistical regularities in phonology. Clinical Neurophysiology, 116(12), 2765-2774. doi:10.1016/j.clinph.2005.08.012
Bornkessel-Schlesewsky, I., Kretzschmar, F., Tune, S., Wang, L., Genç, S., Philipp, M., . . . Schlesewsky, M. (2011). Think globally: Cross-linguistic variation in electrophysiological activity during sentence comprehension. Brain and language, 117(3), 133-152. doi:10.1016/j.bandl.2010.09.010
Brodbeck, C., Hong, L. E., & Simon, J. Z. (2018). Rapid Transformation from Auditory to Linguistic Representations of Continuous Speech. Current Biology, 28(24), 3976-3983.e3975. doi:10.1016/j.cub.2018.10.042
Brown-Schmidt, S., & Canseco-Gonzalez, E. (2004). Who do you love, your mother or your horse? An event-related brain potential analysis of tone processing in Mandarin Chinese. Journal of psycholinguistic research, 33(2), 103-135. doi:10.1023/B:JOPR.0000017223.98667.10
Chang, H.-C., Lee, H.-J., Tzeng, O. J. L., & Kuo, W.-J. (2014). Implicit Target Substitution and Sequencing for Lexical Tone Production in Chinese: An fMRI Study. PloS one, 9(1), e83126. doi:10.1371/journal.pone.0083126
Chang, Y.-H. (2013). Variability in cross-dialectal production and perception of contrasting phonemes: the case of the alveolar-retroflex contrast in Beijing and Taiwan Mandarin (Doctoral dissertation, University of Illinois at Urbana-Champaign). Retrieved from http://hdl.handle.net/2142/42241
Chao, Y. R. (1965). A grammar of spoken Chinese. Berkeley: University of California Press.
Cheng, C., Chen, J.-Y., & Gubian, M. (2013). Are Mandarin sandhi tone 3 and tone 2 the same or different? The results of functional data analysis. In Proceedings of the 27th Pacific Asia Conference on Language, Information, and Computation (PACLIC 27) (pp. 296-301).
Choi, W., Tong, X., Gu, F., Tong, X., & Wong, L. (2017). On the early neural perceptual integrality of tones and vowels. Journal of Neurolinguistics, 41, 11-23. doi:10.1016/j.jneuroling.2016.09.003
Chomsky, N., & Halle, M. (1965). Some Controversial Questions in Phonological Theory. Journal of Linguistics, 1(2), 97-138. Retrieved from http://www.jstor.org/stable/4174898
Chuang, Y.-Y., Wang, S.-F., & Fon, J. (2015). Cross-linguistic interaction between two voiced fricatives in Mandarin-Min simultaneous bilinguals. In The Scottish Consortium for ICPhS 2015 (Ed.), Proceedings of the 18th International Congress of Phonetic Sciences. Glasgow, UK: the University of Glasgow.
Chung, K. S. (2006). Hypercorrection in taiwan mandarin. Journal of Asian Pacific Communication, 16(2), 197-214. doi:10.1075/japc.16.2.04chu
Clark, H. H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. Journal of Verbal Learning and Verbal Behavior, 12(4), 335-359. doi:10.1016/S0022-5371(73)80014-3
Connolly, J. F., & Phillips, N. A. (1994). Event-Related Potential Components Reflect Phonological and Semantic Processing of the Terminal Word of Spoken Sentences. Journal of Cognitive Neuroscience, 6(3), 256-266. doi:10.1162/jocn.1994.6.3.256
Cutler, A., & Chen, H.-C. (1997). Lexical tone in Cantonese spoken-word processing. Perception & Psychophysics, 59(2), 165-179. doi:10.3758/bf03211886
Daffner, K. R., Mesulam, M. M., Scinto, L. F. M., Calvo, V., Faust, R., & Holcomb, P. J. (2000). An electrophysiological index of stimulus unfamiliarity. Psychophysiology, 37(6), 737-747. doi:10.1111/1469-8986.3760737
de Cheveigné, A., Di Liberto, G. M., Arzounian, D., Wong, D. D. E., Hjortkjær, J., Fuglsang, S., & Parra, L. C. (2019). Multiway canonical correlation analysis of brain data. NeuroImage, 186, 728-740. doi:10.1016/j.neuroimage.2018.11.026
Dehaene-Lambertz, G., Dupoux, E., & Gout, A. (2000). Electrophysiological Correlates of Phonological Processing: A Cross-linguistic Study. Journal of Cognitive Neuroscience, 12(4), 635-647. doi:10.1162/089892900562390
Dehaene, S., & Changeux, J.-P. (2011). Experimental and Theoretical Approaches to Conscious Processing. Neuron, 70(2), 200-227. doi:10.1016/j.neuron.2011.03.018
Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience methods, 134(1), 9-21. doi:10.1016/j.jneumeth.2003.10.009
Di Liberto, G. M., Wong, D., Melnik, G. A., & de Cheveigné, A. (2019). Low-frequency cortical responses to natural speech reflect probabilistic phonotactics. NeuroImage, 196, 237-247. doi:10.1016/j.neuroimage.2019.04.037
Domahs, U., Kehrein, W., Knaus, J., Wiese, R., & Schlesewsky, M. (2009). Event-related potentials reflecting the processing of phonological constraint violations. Language and Speech, 52(4), 415-435. doi:10.1177/0023830909336581
Duanmu, S. (1990). A formal study of syllable, tone, stress and domain in Chinese languages (Doctoral dissertation, Massachusetts Institute of Technology). Retrieved from http://dspace.mit.edu/handle/1721.1/13646
Duanmu, S. (2002). The Phonology of Standard Chinese. Oxford University Press.
Duanmu, S. (2007). The phonology of standard Chinese. Oxford University Press.
Duanmu, S. (2011). Chinese Syllable Structure. In M. van Oostendorp, C. J. Ewen, E. V. Hume, & K. Rice (Eds.), The Blackwell Companion to Phonology (Vol. V, pp. 1-24). Malden, MA: Wiley-Blackwell.
Fields, E. C. (2017). Factorial Mass Univariate ERP Toolbox. Retrieved from https://github.com/ericcfields/FMUT/releases
Francis, A. L., Baldwin, K., & Nusbaum, H. C. (2000). Effects of training on attention to acoustic cues. Perception & Psychophysics, 62(8), 1668-1680. doi:10.3758/bf03212164
Fu, Q.-J., & Zeng, F.-G. (2000). Identification of temporal envelope cues in Chinese tone recognition. Asia Pacific Journal of Speech, Language and Hearing, 5(1), 45-57. doi:10.1179/136132800807547582
Gong, D. S. (2017). Grammaticality and Lexical Statistics in Chinese Unnatural Phonotactics. UCL Working Papers in Linguistics, 29.
Groppe, D. M., Urbach, T. P., & Kutas, M. (2011). Mass univariate analysis of event‐related brain potentials/fields I: A critical tutorial review. Psychophysiology, 48(12), 1711-1725. doi:10.1111/j.1469-8986.2011.01273.x
Hayes, B., & Wilson, C. (2008). A Maximum Entropy Model of Phonotactics and Phonotactic Learning. Linguistic Inquiry, 39(3), 379-440. doi:10.1162/ling.2008.39.3.379
He, L., & Dellwo, V. (2016). A Praat-Based Algorithm to Extract the Amplitude Envelope and Temporal Fine Structure Using the Hilbert Transform. Proc. Interspeech 2016, 530-534. doi:10.21437/Interspeech.2016-1447
Hertrich, I., Mathiak, K., Lutzenberger, W., & Ackermann, H. (2000). Differential impact of periodic and aperiodic speech-like acoustic signals on magnetic M50/M100 fields. NeuroReport, 11(18), 4017-4020. doi:10.1097/00001756-200012180-00023
Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 50(3), 346-363. doi:10.1002/bimj.200810425
Hu, J., Gao, S., Ma, W., & Yao, D. (2012). Dissociation of tone and vowel processing in Mandarin idioms. Psychophysiology, 49(9), 1179-1190. doi:10.1111/j.1469-8986.2012.01406.x
Huang, K. (2012). A study of neutral-tone syllables in Taiwan Mandarin (Doctoral dissertations). Retrieved from ProQuest Dissertations and Theses database. (1651840676).
Hunter, C. R. (2013). Early effects of neighborhood density and phonotactic probability of spoken words on event-related potentials. Brain and language, 127(3), 463-474. doi:10.1016/j.bandl.2013.09.006
Jasper, H. H. (1958). The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology, 10, 370-375.
Keung, T., & Hoosain, R. (1979). Segmental phonemes and tonal phonemes in comprehension of Cantonese. Psychologia: An International Journal of Psychology in the Orient, 22(4), 222-224.
Kirby, J. P., & Yu, A. C. L. (2007). Lexical and phonotactic effects on wordlikeness judgments in Cantonese. Proceedings of the International Congress of the Phonetic Sciences XVI, 13891392.
Klem, G. H., Lüders, H. O., Jasper, H. H., & Elger, C. (1999). The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology, 52(3), 3-6.
Kubler, C. C. (1985). The influence of Southern Min on the Mandarin of Taiwan. Anthropological Linguistics, 27(2), 156-176.
Kuo, Y.-C., Rosen, S., & Faulkner, A. (2008). Acoustic cues to tonal contrasts in Mandarin: Implications for cochlear implants. The Journal of the Acoustical Society of America, 123(5), 2815-2824. doi:10.1121/1.2896755
Lütkenhöner, B., Seither-Preisler, A., & Seither, S. (2006). Piano tones evoke stronger magnetic fields than pure tones or noise, both in musicians and non-musicians. NeuroImage, 30(3), 927-937. doi:10.1016/j.neuroimage.2005.10.034
Lai, Y.-C. (2003). A Perceptual Investigation on Mandarin Tonotactic Gaps. (Unpublished master's thesis). National Tsing Hua University, Hsinchu, Taiwan. Retrieved from https://hdl.handle.net/11296/8w2b4h
Lee, C.-Y. (2007). Does Horse Activate Mother? Processing Lexical Tone in Form Priming. Language and Speech, 50(1), 101-123. doi:10.1177/00238309070500010501
Lee, Y. J. (2008). The role of lexical tone in spoken word recognition of Chinese (Master's thesis, University of Kansas). Retrieved from http://hdl.handle.net/1808/4013
Leonard, M. K., Bouchard, K. E., Tang, C., & Chang, E. F. (2015). Dynamic encoding of speech sequence probability in human temporal cortex. Journal of Neuroscience, 35(18), 7203-7214. doi:10.1523/JNEUROSCI.4100-14.2015
Li, W., Wang, L., & Yang, Y. (2014). Chinese tone and vowel processing exhibits distinctive temporal characteristics: An electrophysiological perspective from classical Chinese poem processing. PloS one, 9(1), e85683. doi:10.1371/journal.pone.0085683
Lin, Y.-H. (1989). Autosegmental treatment of segmental processes in Chinese phonology. (Doctoral dissertation). University of Texas at Austin,
Liu, S., & Samuel, A. G. (2004). Perception of Mandarin Lexical Tones when F0 Information is Neutralized. Language and Speech, 47(2), 109-138. doi:10.1177/00238309040470020101
Liu, S., & Samuel, A. G. (2007). The role of Mandarin lexical tones in lexical access under different contextual conditions. Language and Cognitive Processes, 22(4), 566-594. doi:10.1080/01690960600989600
Lo, S., & Andrews, S. (2015). To transform or not to transform: Using generalized linear mixed models to analyse reaction time data. Frontiers in psychology, 6, 1171. doi:10.3389/fpsyg.2015.01171
Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: an open-source toolbox for the analysis of event-related potentials. Frontiers in human neuroscience, 8, 213. doi:10.3389/fnhum.2014.00213
Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique. Cambridge, MA: MIT Press.
Luo, H., Ni, J.-T., Li, Z.-H., Li, X.-O., Zhang, D.-R., Zeng, F.-G., & Chen, L. (2006). Opposite patterns of hemisphere dominance for early auditory processing of lexical tones and consonants. Proceedings of the National Academy of Sciences, 103(51), 19558-19563. doi:10.1073/pnas.0607065104
Malins, J. G., & Joanisse, M. F. (2010). The roles of tonal and segmental information in Mandarin spoken word recognition: An eyetracking study. Journal of Memory and Language, 62(4), 407-420. doi:10.1016/j.jml.2010.02.004
Malins, J. G., & Joanisse, M. F. (2012). Setting the tone: An ERP investigation of the influences of phonological similarity on spoken word recognition in Mandarin Chinese. Neuropsychologia, 50(8), 2032-2043. doi:10.1016/j.neuropsychologia.2012.05.002
Marslen-Wilson, W. D. (1987). Functional parallelism in spoken word-recognition. Cognition, 25(1), 71-102. doi:10.1016/0010-0277(87)90005-9
Marslen-Wilson, W. D., & Welsh, A. (1978). Processing interactions and lexical access during word recognition in continuous speech. Cognitive Psychology, 10(1), 29-63. doi:10.1016/0010-0285(78)90018-X
Matell, M. S., & Jacoby, J. (1972). Is there an optimal number of alternatives for Likert-scale items? Effects of testing time and scale properties. Journal of Applied Psychology, 56(6), 506.
Mattys, S. L., White, L., & Melhorn, J. F. (2005). Integration of Multiple Speech Segmentation Cues: A Hierarchical Framework. Journal of Experimental Psychology: General, 134(4), 477-500. doi:10.1037/0096-3445.134.4.477
McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive Psychology, 18(1), 1-86. doi:10.1016/0010-0285(86)90015-0
Myers, J. (1995). Nonlocal dissimilation in Mandarin syllables. Paper presented at the Joint Meeting of the Fourth International Conference on Chinese Linguistics and the Seventh North American Conference on Chinese Linguistics, University of Wisconsin at Madison.
Myers, J. (2002). An analogical approach to the Mandarin syllabary. Chinese Phonology, 11, 163-190.
Myers, J., & Chen, T.-Y. (2019). Variation in syllable decomposition across Sinitic languages. Paper presented at the 27th Annual Conference of the International Association of Chinese Linguistics, Kobe City University of Foreign Studies.
Newman, R. L., & Connolly, J. F. (2009). Electrophysiological markers of pre-lexical speech processing: Evidence for bottom–up and top–down effects on spoken word processing. Biological Psychology, 80(1), 114-121. doi:10.1016/j.biopsycho.2008.04.008
Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 2544-2590. doi:10.1016/j.clinph.2007.04.026
Norris, D. (1994). Shortlist: A connectionist model of continuous speech recognition. Cognition, 52(3), 189-234. doi:10.1016/0010-0277(94)90043-4
Obleser, J., Scott, S. K., & Eulitz, C. (2005). Now You Hear It, Now You Don't: Transient Traces of Consonants and their Nonspeech Analogues in the Human Brain. Cerebral Cortex, 16(8), 1069-1076. doi:10.1093/cercor/bhj047
Obrig, H., Mentzel, J., & Rossi, S. (2016). Universal and language-specific sublexical cues in speech perception: a novel electroencephalography-lesion approach. Brain, 139(6), 1800-1816. doi:10.1093/brain/aww077
Ott, C. G. M., Langer, N., Oechslin, M. S., Meyer, M., & Jäncke, L. (2011). Processing of voiced and unvoiced acoustic stimuli in musicians. Frontiers in psychology, 2, 195-195. doi:10.3389/fpsyg.2011.00195
Ouyang, G., Sommer, W., & Zhou, C. (2016). Reconstructing ERP amplitude effects after compensating for trial-to-trial latency jitter: A solution based on a novel application of residue iteration decomposition. International Journal of Psychophysiology, 109, 9-20. doi:10.1016/j.ijpsycho.2016.09.015
Price, C. J., Wise, R. J. S., & Frackowiak, R. S. J. (1996). Demonstrating the Implicit Processing of Visually Presented Words and Pseudowords. Cerebral Cortex, 6(1), 62-70. doi:10.1093/cercor/6.1.62
Pylkkänen, L., Stringfellow, A., & Marantz, A. (2002). Neuromagnetic Evidence for the Timing of Lexical Activation: An MEG Component Sensitive to Phonotactic Probability but Not to Neighborhood Density. Brain and language, 81(1), 666-678. doi:10.1006/brln.2001.2555
R Core Team. (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
Raaijmakers, J. G. W., Schrijnemakers, J. M. C., & Gremmen, F. (1999). How to Deal with “The Language-as-Fixed-Effect Fallacy”: Common Misconceptions and Alternative Solutions. Journal of Memory and Language, 41(3), 416-426. doi:10.1006/jmla.1999.2650
Read, C., Yun-Fei, Z., Hong-Yin, N., & Bao-Qing, D. (1986). The ability to manipulate speech sounds depends on knowing alphabetic writing. Cognition, 24(1), 31-44. doi:10.1016/0010-0277(86)90003-X
Repp, B. H., & Lin, H.-b. (1990). Integration of segmental and tonal information in speech perception: A cross-linguistic study. Journal of Phonetics, 18(4), 481-495. doi:10.1016/S0095-4470(19)30410-3
Rossi, S., Jürgenson, I. B., Hanulíková, A., Telkemeyer, S., Wartenburger, I., & Obrig, H. (2011). Implicit processing of phonotactic cues: evidence from electrophysiological and vascular responses. Journal of Cognitive Neuroscience, 23(7), 1752-1764. doi:10.1162/jocn.2010.21547
Schirmer, A., Tang, S.-L., Penney, T. B., Gunter, T. C., & Chen, H.-C. (2005). Brain Responses to Segmentally and Tonally Induced Semantic Violations in Cantonese. Journal of Cognitive Neuroscience, 17(1), 1-12. doi:10.1162/0898929052880057
Shan, G., & Gerstenberger, S. (2017). Fisher’s exact approach for post hoc analysis of a chi-squared test. PloS one, 12(12), e0188709. doi:10.1371/journal.pone.0188709
Silva, S., Vigário, M., Fernandez, B. L., Jerónimo, R., Alter, K., & Frota, S. (2019). The sense of sounds: Brain responses to phonotactic frequency, phonological grammar and lexical meaning. Frontiers in psychology, 10. doi:10.3389/fpsyg.2019.00681
Simos, P. G., Diehl, R. L., Breier, J. I., Molis, M. R., Zouridakis, G., & Papanicolaou, A. C. (1998). MEG correlates of categorical perception of a voice onset time continuum in humans. Cognitive Brain Research, 7(2), 215-219. doi:10.1016/S0926-6410(98)00037-8
Soto-Faraco, S., Sebastián-Gallés, N., & Cutler, A. (2001). Segmental and Suprasegmental Mismatch in Lexical Access. Journal of Memory and Language, 45(3), 412-432. doi:10.1006/jmla.2000.2783
Steinberg, J., Truckenbrodt, H., & Jacobsen, T. (2010a). Activation and application of an obligatory phonotactic constraint in German during automatic speech processing is revealed by human event-related potentials. International Journal of Psychophysiology, 77(1), 13-20. doi:10.1016/j.ijpsycho.2010.03.011
Steinberg, J., Truckenbrodt, H., & Jacobsen, T. (2010b). Preattentive Phonotactic Processing as Indexed by the Mismatch Negativity. Journal of Cognitive Neuroscience, 22(10), 2174-2185. doi:10.1162/jocn.2009.21408
Steinberg, J., Truckenbrodt, H., & Jacobsen, T. (2011). Phonotactic constraint violations in German grammar are detected automatically in auditory speech processing: A human event-related potentials study. Psychophysiology, 48(9), 1208-1216. doi:10.1111/j.1469-8986.2011.01200.x
Strauß, A., Kotz, S. A., Scharinger, M., & Obleser, J. (2014). Alpha and theta brain oscillations index dissociable processes in spoken word recognition. NeuroImage, 97, 387-395. doi:10.1016/j.neuroimage.2014.04.005
Swaab, T. Y., Ledoux, K., Camblin, C. C., & Boudewyn, M. A. (2012). Language-related ERP components. In The Oxford handbook of event-related potential components. (pp. 397-439). New York: Oxford University Press.
Taft, M., & Chen, H.-C. (1992). Judging Homophony in Chinese: The Influence of Tones. In H.-C. Chen & O. J. L. Tzeng (Eds.), Advances in Psychology (Vol. 90, pp. 151-172). North-Holland.
Tai, J. H.-Y. (1978). Phonological changes in Modern Standard Chinese in the People’s Republic of China since 1949. Washington, DC: Office of Research United States InformationAgency.
Tong, X., McBride, C., & Burnham, D. (2014). Cues for lexical tone perception in children: Acoustic correlates and phonetic context effects. Journal of Speech, Language, and Hearing Research, 57(5), 1589-1605. doi:10.1044/2014_JSLHR-S-13-0145
Tong, Y., Francis, A. L., & Gandour, J. T. (2008). Processing dependencies between segmental and suprasegmental features in Mandarin Chinese. Language and Cognitive Processes, 23(5), 689-708. doi:10.1080/01690960701728261
Tung, T'.-H. (1970). Hanyu Yinyunxue [Chinese Phonology]. Taipei: Xuesheng shuju.
Ulbrich, C., Alday, P. M., Knaus, J., Orzechowska, P., & Wiese, R. (2016). The role of phonotactic principles in language processing. Language, Cognition and Neuroscience, 31(5), 662-682. doi:10.1080/23273798.2015.1136427
van Boxtel, G. J. M., & Böcker, K. B. E. (2004). Cortical Measures of Anticipation. Journal of Psychophysiology, 18(2-3), 61-76. doi:10.1027/0269-8803.18.23.61
Vitevitch, M. S., & Luce, P. A. (1998). When Words Compete: Levels of Processing in Perception of Spoken Words. Psychological Science, 9(4), 325-329. doi:10.1111/1467-9280.00064
Vitevitch, M. S., & Luce, P. A. (1999). Probabilistic Phonotactics and Neighborhood Activation in Spoken Word Recognition. Journal of Memory and Language, 40(3), 374-408. doi:10.1006/jmla.1998.2618
Wagner, M., Shafer, V. L., Martin, B., & Steinschneider, M. (2012). The phonotactic influence on the perception of a consonant cluster/pt/by native English and native Polish listeners: A behavioral and event related potential (ERP) study. Brain and language, 123(1), 30-41. doi:10.1016/j.bandl.2012.06.002
Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, W. C., & Winter, A. L. (1964). Contingent Negative Variation : An Electric Sign of Sensori-Motor Association and Expectancy in the Human Brain. Nature, 203(4943), 380-384. doi:10.1038/203380a0
Wang, H. S. (1998). An experimental study on the phonotactic constraints of Mandarin Chinese. Studia Linguistica Serica, 259-268.
Whalen, D. H., & Xu, Y. (1992). Information for Mandarin Tones in the Amplitude Contour and in Brief Segments. Phonetica, 49(1), 25-47. doi:10.1159/000261901
White, J., & Chiu, F. (2017). Disentangling phonological well-formedness and attestedness: An ERP study of onset clusters in English. Acta Linguistica Academica, 64(4), 513-537. doi:10.1556/2062.2017.64.4.2
Wiener, S., & Ito, K. (2015). Do syllable-specific tonal probabilities guide lexical access? Evidence from Mandarin, Shanghai and Cantonese speakers. Language, Cognition and Neuroscience, 30(9), 1048-1060. doi:10.1080/23273798.2014.946934
Wiener, S., & Ito, K. (2016). Impoverished acoustic input triggers probability-based tone processing in mono-dialectal Mandarin listeners. Journal of Phonetics, 56, 38-51. doi:10.1016/j.wocn.2016.02.001
Wiener, S., & Turnbull, R. (2016). Constraints of tones, vowels and consonants on lexical selection in Mandarin Chinese. Language and Speech, 59(1), 59-82. doi:10.1177/0023830915578000
Wiese, R. (1997). Underspecification and the description of Chinese vowels. In J. Wang & N. Smith (Eds.), Studies in Chinese Phonology (pp. 219-249). Mouton de Gruyter.
Winsler, K., Midgley, K. J., Grainger, J., & Holcomb, P. J. (2018). An electrophysiological megastudy of spoken word recognition. Language, Cognition and Neuroscience, 33(8), 1063-1082. doi:10.1080/23273798.2018.1455985
Xu, Y. (1997). Contextual tonal variations in Mandarin. Journal of Phonetics, 25(1), 61-83. doi:10.1006/jpho.1996.0034
Yao, Y., & Sharma, B. (2017). What is in the neighborhood of a tonal syllable? Evidence from auditory lexical decision in Mandarin Chinese. Proceedings of the Linguistic Society of America, 2, 45-41-14.
Ye, Y., & Connine, C. M. (1999). Processing spoken Chinese: The role of tone information. Language and Cognitive Processes, 14(5-6), 609-630. doi:10.1080/016909699386202
Ylinen, S., Huuskonen, M., Mikkola, K., Saure, E., Sinkkonen, T., & Paavilainen, P. (2016). Predictive coding of phonological rules in auditory cortex: A mismatch negativity study. Brain and language, 162, 72-80. doi:10.1016/j.bandl.2016.08.007
Yrttiaho, S., Tiitinen, H., May, P. J. C., Leino, S., & Alku, P. (2008). Cortical sensitivity to periodicity of speech sounds. The Journal of the Acoustical Society of America, 123(4), 2191-2199. doi:10.1121/1.2888489
Zaehle, T., Jancke, L., & Meyer, M. (2007). Electrical brain imaging evidences left auditory cortex involvement in speech and non-speech discrimination based on temporal features. Behavioral and Brain Functions, 3(1), 63. doi:10.1186/1744-9081-3-63
Zhan, H.-Z. (1984). Guoyin │Z│ zai taiwan de fazhan zhuangkuang--shehuiyuyanxue yanjiu [The development of Mandarin |Z| in Taiwan: a sociolinguistic study] (Unpublished master's thesis). Fu Jen Catholic University, Taipei, Taiwan. Retrieved from https://hdl.handle.net/11296/37b82k
Zhao, J., Guo, J., Zhou, F., & Shu, H. (2011). Time course of Chinese monosyllabic spoken word recognition: Evidence from ERP analyses. Neuropsychologia, 49(7), 1761-1770. doi:10.1016/j.neuropsychologia.2011.02.054
Zhou, X. (1992). The mental representation of Chinese disyllabic words (Unpublished doctoral dissertation). University of Cambridge, Cambridge, England.
Zhou, X., & Marslen-Wilson, W. D. (1992). The morphological priming effects in Chinese compound words. Paper presented at the 25th International Congress of Psychology, Brussels.
Zhou, X., & Marslen-wilson, W. D. (1994). Words, morphemes and syllables in the Chinese mental lexicon. Language and Cognitive Processes, 9(3), 393-422. doi:10.1080/01690969408402125