簡易檢索 / 詳目顯示

研究生: 張瓊予
Chang, Chiung-Yu
論文名稱: 台灣華語音節缺罅引發之神經反應: 事件相關電位研究
Neural responses to syllable gaps in Taiwanese Mandarin: an event-related potential study
指導教授: 謝豐帆
Hsieh, Feng-Fan
口試委員: 張月琴
Chang, Yueh-Chin
林若芙
Lin, Jo-Fu
學位類別: 碩士
Master
系所名稱: 人文社會學院 - 語言學研究所
Institute of Linguistics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 104
中文關鍵詞: 漢語音節缺罅事件相關電位音韻組合限制處理N2-P3複合成分晚期正向複合成分口語詞彙辨識
外文關鍵詞: Mandarin syllable gaps, Event-related potential, phonotactic processing, N2-P3 complex, late positive complex, spoken word recognition
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討台灣華語中不存在的音節所引發之事件相關電位(event-related potential)。在漢語音節是由音段和聲調構成的假設之下,我檢視了兩類假定的音節:(一)音段缺罅(segmental gaps),即音段部分不管和哪一種聲調結合都不存在的組合,例如:*[ki1]、*[ki2]、*[ki3]、*[ki4]等;(二)聲調缺罅(tonal gaps),亦即換成其他聲調後可能存在的組合,例如:*[tau2](換成一聲後可變成實際存在的「刀」[tau1])。此外,我做了兩個運用不同任務的實驗,以探索音位組合限制的處理(phonotactic processing)是否取決於任務的類型。在實驗一中,受試者被動地聆聽關鍵刺激項。在約345毫秒時,聲調缺罅所造成的N2-P3複合成分(N2-P3 complex)的電位較音段缺罅和真詞所造成的電位為負。在實驗二中,受試者則是執行詞彙判斷任務(lexical decision task),此時音段缺罅所造成的晚期正向複合成分(late positive complex)的電位較其他類型的刺激項所造成的電位為負。這些結果顯示,在語音感知中,聲調和音段的資訊有不同的處理方式,而且相關的腦部反應取決於實驗時進行的任務。本文也討論了這些結果對於口語詞彙辨識(spoken word recognition)模型的理論意義,以及潛在的跨語言差異對實驗結果的影響。


    This study investigates the event-related potentials evoked by nonexistent syllables in Taiwanese Mandarin. Under the assumption that a Mandarin syllable is comprised of segments and a lexical tone, two types of hypothetical syllables were examined: (1) segmental gaps, or combinations that are unattested regardless of their associated lexical tones (e.g., *[ki1], *[ki2], *[ki3], *[ki4]); and (2) tonal gaps, combinations that are unattested with certain lexical tones but not others (e.g., *[tau2]; cf. [tau1] ‘knife’). In addition, two experiments using different tasks were conducted to explore the task dependency of phonotactic processing. In Experiment 1, participants listened to the critical stimuli passively. The voltage of the N2-P3 complex around 345 ms was more negative for tonal gaps than segmental gaps and real words. On the other hand, when participants performed a lexical decision task in Experiment 2, the voltage of the late positive complex was more positive for segmental gaps than the other types of stimuli. These results suggest that tonal and segmental information are processed differently in speech perception and that the brain responses depend on the nature of the experimental task. Implications for competing models of spoken word recognition and potential cross-linguistic differences are also discussed.

    摘要 i Abstract ii 誌謝辭 iii Table of contents iv List of tables vi List of figures vii List of formulae viii Chapter 1 Introduction 1 Chapter 2 Backgrounds 6 2.1 Mandarin syllable gaps 7 2.1.1 Classification of syllable gaps 8 2.1.2 Phonetic and phonological properties 13 2.2 Tones and segments in spoken Mandarin 18 2.2.1 Relative functional weight 19 2.2.2 Relative timing 21 2.2.3 Integration of tones and segments 25 2.3 Electrophysiological correlates of phonotactic processing 26 2.3.1 Categorical phonotactics 26 2.3.1.1 Violation paradigm 26 2.3.1.2 MMN paradigm 31 2.3.2 Probabilistic phonotactics 33 2.4 Research questions of the current study 38 Chapter 3 Experiment 1 (Go/No-Go task) 41 3.1 Method 41 3.1.1 Participants 41 3.1.2 Materials 42 3.1.3 Procedure 44 3.1.4 EEG acquisition 45 3.1.5 Data preprocessing 46 3.2 Results 47 3.2.1 Behavioral data 48 3.2.2 ERP data 48 3.2.2.1 Overview 48 3.2.2.2 Waveform analysis 50 3.2.2.3 Topographic analysis 52 3.3 Discussion 53 Chapter 4 Experiment 2 (lexical decision task) 58 4.1 Method 58 4.1.1 Participants 58 4.1.2 Materials 58 4.1.3 Procedure 59 4.1.4 Data acquisition and preprocessing 59 4.2 Results 60 4.2.1 Behavioral data 60 4.2.2 ERP data 65 4.2.2.1 Overview 65 4.2.2.2 Waveform analysis 67 4.2.2.3 Topographic analysis 68 4.3 Discussion 72 Chapter 5 Task comparisons and general discussion 77 5.1 Comparison of ERP responses across tasks 77 5.2 General discussion 79 5.2.1 Task dependency of auditory speech processing 79 5.2.2 Cross-linguistic differences and universal 82 5.2.3 Implications for models of spoken word recognition 84 5.2.4 Current limitations and future directions 86 Chapter 6 Conclusion 89 References 91 Appendix A List of stimuli 101 Appendix B Questionnaire of language background and experience 102

    Aaltonen, O., Hellström, Å., Peltola, M. S., Savela, J., Tamminen, H., & Lehtola, H. (2008). Brain responses reveal hardwired detection of native-language rule violations. Neuroscience letters, 444(1), 56-59. doi:10.1016/j.neulet.2008.07.095
    Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 48. doi:10.18637/jss.v067.i01
    Boersma, P. W., David. (2018). Praat: doing phonetics by computer (Version 6.0.42). Retrieved from http://www.praat.org/
    Bonte, M. L., Mitterer, H., Zellagui, N., Poelmans, H., & Blomert, L. (2005). Auditory cortical tuning to statistical regularities in phonology. Clinical Neurophysiology, 116(12), 2765-2774. doi:10.1016/j.clinph.2005.08.012
    Bornkessel-Schlesewsky, I., Kretzschmar, F., Tune, S., Wang, L., Genç, S., Philipp, M., . . . Schlesewsky, M. (2011). Think globally: Cross-linguistic variation in electrophysiological activity during sentence comprehension. Brain and language, 117(3), 133-152. doi:10.1016/j.bandl.2010.09.010
    Brodbeck, C., Hong, L. E., & Simon, J. Z. (2018). Rapid Transformation from Auditory to Linguistic Representations of Continuous Speech. Current Biology, 28(24), 3976-3983.e3975. doi:10.1016/j.cub.2018.10.042
    Brown-Schmidt, S., & Canseco-Gonzalez, E. (2004). Who do you love, your mother or your horse? An event-related brain potential analysis of tone processing in Mandarin Chinese. Journal of psycholinguistic research, 33(2), 103-135. doi:10.1023/B:JOPR.0000017223.98667.10
    Chang, H.-C., Lee, H.-J., Tzeng, O. J. L., & Kuo, W.-J. (2014). Implicit Target Substitution and Sequencing for Lexical Tone Production in Chinese: An fMRI Study. PloS one, 9(1), e83126. doi:10.1371/journal.pone.0083126
    Chang, Y.-H. (2013). Variability in cross-dialectal production and perception of contrasting phonemes: the case of the alveolar-retroflex contrast in Beijing and Taiwan Mandarin (Doctoral dissertation, University of Illinois at Urbana-Champaign). Retrieved from http://hdl.handle.net/2142/42241
    Chao, Y. R. (1965). A grammar of spoken Chinese. Berkeley: University of California Press.
    Cheng, C., Chen, J.-Y., & Gubian, M. (2013). Are Mandarin sandhi tone 3 and tone 2 the same or different? The results of functional data analysis. In Proceedings of the 27th Pacific Asia Conference on Language, Information, and Computation (PACLIC 27) (pp. 296-301).
    Choi, W., Tong, X., Gu, F., Tong, X., & Wong, L. (2017). On the early neural perceptual integrality of tones and vowels. Journal of Neurolinguistics, 41, 11-23. doi:10.1016/j.jneuroling.2016.09.003
    Chomsky, N., & Halle, M. (1965). Some Controversial Questions in Phonological Theory. Journal of Linguistics, 1(2), 97-138. Retrieved from http://www.jstor.org/stable/4174898
    Chuang, Y.-Y., Wang, S.-F., & Fon, J. (2015). Cross-linguistic interaction between two voiced fricatives in Mandarin-Min simultaneous bilinguals. In The Scottish Consortium for ICPhS 2015 (Ed.), Proceedings of the 18th International Congress of Phonetic Sciences. Glasgow, UK: the University of Glasgow.
    Chung, K. S. (2006). Hypercorrection in taiwan mandarin. Journal of Asian Pacific Communication, 16(2), 197-214. doi:10.1075/japc.16.2.04chu
    Clark, H. H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. Journal of Verbal Learning and Verbal Behavior, 12(4), 335-359. doi:10.1016/S0022-5371(73)80014-3
    Connolly, J. F., & Phillips, N. A. (1994). Event-Related Potential Components Reflect Phonological and Semantic Processing of the Terminal Word of Spoken Sentences. Journal of Cognitive Neuroscience, 6(3), 256-266. doi:10.1162/jocn.1994.6.3.256
    Cutler, A., & Chen, H.-C. (1997). Lexical tone in Cantonese spoken-word processing. Perception & Psychophysics, 59(2), 165-179. doi:10.3758/bf03211886
    Daffner, K. R., Mesulam, M. M., Scinto, L. F. M., Calvo, V., Faust, R., & Holcomb, P. J. (2000). An electrophysiological index of stimulus unfamiliarity. Psychophysiology, 37(6), 737-747. doi:10.1111/1469-8986.3760737
    de Cheveigné, A., Di Liberto, G. M., Arzounian, D., Wong, D. D. E., Hjortkjær, J., Fuglsang, S., & Parra, L. C. (2019). Multiway canonical correlation analysis of brain data. NeuroImage, 186, 728-740. doi:10.1016/j.neuroimage.2018.11.026
    Dehaene-Lambertz, G., Dupoux, E., & Gout, A. (2000). Electrophysiological Correlates of Phonological Processing: A Cross-linguistic Study. Journal of Cognitive Neuroscience, 12(4), 635-647. doi:10.1162/089892900562390
    Dehaene, S., & Changeux, J.-P. (2011). Experimental and Theoretical Approaches to Conscious Processing. Neuron, 70(2), 200-227. doi:10.1016/j.neuron.2011.03.018
    Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience methods, 134(1), 9-21. doi:10.1016/j.jneumeth.2003.10.009
    Di Liberto, G. M., Wong, D., Melnik, G. A., & de Cheveigné, A. (2019). Low-frequency cortical responses to natural speech reflect probabilistic phonotactics. NeuroImage, 196, 237-247. doi:10.1016/j.neuroimage.2019.04.037
    Domahs, U., Kehrein, W., Knaus, J., Wiese, R., & Schlesewsky, M. (2009). Event-related potentials reflecting the processing of phonological constraint violations. Language and Speech, 52(4), 415-435. doi:10.1177/0023830909336581
    Duanmu, S. (1990). A formal study of syllable, tone, stress and domain in Chinese languages (Doctoral dissertation, Massachusetts Institute of Technology). Retrieved from http://dspace.mit.edu/handle/1721.1/13646
    Duanmu, S. (2002). The Phonology of Standard Chinese. Oxford University Press.
    Duanmu, S. (2007). The phonology of standard Chinese. Oxford University Press.
    Duanmu, S. (2011). Chinese Syllable Structure. In M. van Oostendorp, C. J. Ewen, E. V. Hume, & K. Rice (Eds.), The Blackwell Companion to Phonology (Vol. V, pp. 1-24). Malden, MA: Wiley-Blackwell.
    Fields, E. C. (2017). Factorial Mass Univariate ERP Toolbox. Retrieved from https://github.com/ericcfields/FMUT/releases
    Francis, A. L., Baldwin, K., & Nusbaum, H. C. (2000). Effects of training on attention to acoustic cues. Perception & Psychophysics, 62(8), 1668-1680. doi:10.3758/bf03212164
    Fu, Q.-J., & Zeng, F.-G. (2000). Identification of temporal envelope cues in Chinese tone recognition. Asia Pacific Journal of Speech, Language and Hearing, 5(1), 45-57. doi:10.1179/136132800807547582
    Gong, D. S. (2017). Grammaticality and Lexical Statistics in Chinese Unnatural Phonotactics. UCL Working Papers in Linguistics, 29.
    Groppe, D. M., Urbach, T. P., & Kutas, M. (2011). Mass univariate analysis of event‐related brain potentials/fields I: A critical tutorial review. Psychophysiology, 48(12), 1711-1725. doi:10.1111/j.1469-8986.2011.01273.x
    Hayes, B., & Wilson, C. (2008). A Maximum Entropy Model of Phonotactics and Phonotactic Learning. Linguistic Inquiry, 39(3), 379-440. doi:10.1162/ling.2008.39.3.379
    He, L., & Dellwo, V. (2016). A Praat-Based Algorithm to Extract the Amplitude Envelope and Temporal Fine Structure Using the Hilbert Transform. Proc. Interspeech 2016, 530-534. doi:10.21437/Interspeech.2016-1447
    Hertrich, I., Mathiak, K., Lutzenberger, W., & Ackermann, H. (2000). Differential impact of periodic and aperiodic speech-like acoustic signals on magnetic M50/M100 fields. NeuroReport, 11(18), 4017-4020. doi:10.1097/00001756-200012180-00023
    Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 50(3), 346-363. doi:10.1002/bimj.200810425
    Hu, J., Gao, S., Ma, W., & Yao, D. (2012). Dissociation of tone and vowel processing in Mandarin idioms. Psychophysiology, 49(9), 1179-1190. doi:10.1111/j.1469-8986.2012.01406.x
    Huang, K. (2012). A study of neutral-tone syllables in Taiwan Mandarin (Doctoral dissertations). Retrieved from ProQuest Dissertations and Theses database. (1651840676).
    Hunter, C. R. (2013). Early effects of neighborhood density and phonotactic probability of spoken words on event-related potentials. Brain and language, 127(3), 463-474. doi:10.1016/j.bandl.2013.09.006
    Jasper, H. H. (1958). The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology, 10, 370-375.
    Keung, T., & Hoosain, R. (1979). Segmental phonemes and tonal phonemes in comprehension of Cantonese. Psychologia: An International Journal of Psychology in the Orient, 22(4), 222-224.
    Kirby, J. P., & Yu, A. C. L. (2007). Lexical and phonotactic effects on wordlikeness judgments in Cantonese. Proceedings of the International Congress of the Phonetic Sciences XVI, 13891392.
    Klem, G. H., Lüders, H. O., Jasper, H. H., & Elger, C. (1999). The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology, 52(3), 3-6.
    Kubler, C. C. (1985). The influence of Southern Min on the Mandarin of Taiwan. Anthropological Linguistics, 27(2), 156-176.
    Kuo, Y.-C., Rosen, S., & Faulkner, A. (2008). Acoustic cues to tonal contrasts in Mandarin: Implications for cochlear implants. The Journal of the Acoustical Society of America, 123(5), 2815-2824. doi:10.1121/1.2896755
    Lütkenhöner, B., Seither-Preisler, A., & Seither, S. (2006). Piano tones evoke stronger magnetic fields than pure tones or noise, both in musicians and non-musicians. NeuroImage, 30(3), 927-937. doi:10.1016/j.neuroimage.2005.10.034
    Lai, Y.-C. (2003). A Perceptual Investigation on Mandarin Tonotactic Gaps. (Unpublished master's thesis). National Tsing Hua University, Hsinchu, Taiwan. Retrieved from https://hdl.handle.net/11296/8w2b4h
    Lee, C.-Y. (2007). Does Horse Activate Mother? Processing Lexical Tone in Form Priming. Language and Speech, 50(1), 101-123. doi:10.1177/00238309070500010501
    Lee, Y. J. (2008). The role of lexical tone in spoken word recognition of Chinese (Master's thesis, University of Kansas). Retrieved from http://hdl.handle.net/1808/4013
    Leonard, M. K., Bouchard, K. E., Tang, C., & Chang, E. F. (2015). Dynamic encoding of speech sequence probability in human temporal cortex. Journal of Neuroscience, 35(18), 7203-7214. doi:10.1523/JNEUROSCI.4100-14.2015
    Li, W., Wang, L., & Yang, Y. (2014). Chinese tone and vowel processing exhibits distinctive temporal characteristics: An electrophysiological perspective from classical Chinese poem processing. PloS one, 9(1), e85683. doi:10.1371/journal.pone.0085683
    Lin, Y.-H. (1989). Autosegmental treatment of segmental processes in Chinese phonology. (Doctoral dissertation). University of Texas at Austin,
    Liu, S., & Samuel, A. G. (2004). Perception of Mandarin Lexical Tones when F0 Information is Neutralized. Language and Speech, 47(2), 109-138. doi:10.1177/00238309040470020101
    Liu, S., & Samuel, A. G. (2007). The role of Mandarin lexical tones in lexical access under different contextual conditions. Language and Cognitive Processes, 22(4), 566-594. doi:10.1080/01690960600989600
    Lo, S., & Andrews, S. (2015). To transform or not to transform: Using generalized linear mixed models to analyse reaction time data. Frontiers in psychology, 6, 1171. doi:10.3389/fpsyg.2015.01171
    Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: an open-source toolbox for the analysis of event-related potentials. Frontiers in human neuroscience, 8, 213. doi:10.3389/fnhum.2014.00213
    Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique. Cambridge, MA: MIT Press.
    Luo, H., Ni, J.-T., Li, Z.-H., Li, X.-O., Zhang, D.-R., Zeng, F.-G., & Chen, L. (2006). Opposite patterns of hemisphere dominance for early auditory processing of lexical tones and consonants. Proceedings of the National Academy of Sciences, 103(51), 19558-19563. doi:10.1073/pnas.0607065104
    Malins, J. G., & Joanisse, M. F. (2010). The roles of tonal and segmental information in Mandarin spoken word recognition: An eyetracking study. Journal of Memory and Language, 62(4), 407-420. doi:10.1016/j.jml.2010.02.004
    Malins, J. G., & Joanisse, M. F. (2012). Setting the tone: An ERP investigation of the influences of phonological similarity on spoken word recognition in Mandarin Chinese. Neuropsychologia, 50(8), 2032-2043. doi:10.1016/j.neuropsychologia.2012.05.002
    Marslen-Wilson, W. D. (1987). Functional parallelism in spoken word-recognition. Cognition, 25(1), 71-102. doi:10.1016/0010-0277(87)90005-9
    Marslen-Wilson, W. D., & Welsh, A. (1978). Processing interactions and lexical access during word recognition in continuous speech. Cognitive Psychology, 10(1), 29-63. doi:10.1016/0010-0285(78)90018-X
    Matell, M. S., & Jacoby, J. (1972). Is there an optimal number of alternatives for Likert-scale items? Effects of testing time and scale properties. Journal of Applied Psychology, 56(6), 506.
    Mattys, S. L., White, L., & Melhorn, J. F. (2005). Integration of Multiple Speech Segmentation Cues: A Hierarchical Framework. Journal of Experimental Psychology: General, 134(4), 477-500. doi:10.1037/0096-3445.134.4.477
    McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive Psychology, 18(1), 1-86. doi:10.1016/0010-0285(86)90015-0
    Myers, J. (1995). Nonlocal dissimilation in Mandarin syllables. Paper presented at the Joint Meeting of the Fourth International Conference on Chinese Linguistics and the Seventh North American Conference on Chinese Linguistics, University of Wisconsin at Madison.
    Myers, J. (2002). An analogical approach to the Mandarin syllabary. Chinese Phonology, 11, 163-190.
    Myers, J., & Chen, T.-Y. (2019). Variation in syllable decomposition across Sinitic languages. Paper presented at the 27th Annual Conference of the International Association of Chinese Linguistics, Kobe City University of Foreign Studies.
    Newman, R. L., & Connolly, J. F. (2009). Electrophysiological markers of pre-lexical speech processing: Evidence for bottom–up and top–down effects on spoken word processing. Biological Psychology, 80(1), 114-121. doi:10.1016/j.biopsycho.2008.04.008
    Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 2544-2590. doi:10.1016/j.clinph.2007.04.026
    Norris, D. (1994). Shortlist: A connectionist model of continuous speech recognition. Cognition, 52(3), 189-234. doi:10.1016/0010-0277(94)90043-4
    Obleser, J., Scott, S. K., & Eulitz, C. (2005). Now You Hear It, Now You Don't: Transient Traces of Consonants and their Nonspeech Analogues in the Human Brain. Cerebral Cortex, 16(8), 1069-1076. doi:10.1093/cercor/bhj047
    Obrig, H., Mentzel, J., & Rossi, S. (2016). Universal and language-specific sublexical cues in speech perception: a novel electroencephalography-lesion approach. Brain, 139(6), 1800-1816. doi:10.1093/brain/aww077
    Ott, C. G. M., Langer, N., Oechslin, M. S., Meyer, M., & Jäncke, L. (2011). Processing of voiced and unvoiced acoustic stimuli in musicians. Frontiers in psychology, 2, 195-195. doi:10.3389/fpsyg.2011.00195
    Ouyang, G., Sommer, W., & Zhou, C. (2016). Reconstructing ERP amplitude effects after compensating for trial-to-trial latency jitter: A solution based on a novel application of residue iteration decomposition. International Journal of Psychophysiology, 109, 9-20. doi:10.1016/j.ijpsycho.2016.09.015
    Price, C. J., Wise, R. J. S., & Frackowiak, R. S. J. (1996). Demonstrating the Implicit Processing of Visually Presented Words and Pseudowords. Cerebral Cortex, 6(1), 62-70. doi:10.1093/cercor/6.1.62
    Pylkkänen, L., Stringfellow, A., & Marantz, A. (2002). Neuromagnetic Evidence for the Timing of Lexical Activation: An MEG Component Sensitive to Phonotactic Probability but Not to Neighborhood Density. Brain and language, 81(1), 666-678. doi:10.1006/brln.2001.2555
    R Core Team. (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
    Raaijmakers, J. G. W., Schrijnemakers, J. M. C., & Gremmen, F. (1999). How to Deal with “The Language-as-Fixed-Effect Fallacy”: Common Misconceptions and Alternative Solutions. Journal of Memory and Language, 41(3), 416-426. doi:10.1006/jmla.1999.2650
    Read, C., Yun-Fei, Z., Hong-Yin, N., & Bao-Qing, D. (1986). The ability to manipulate speech sounds depends on knowing alphabetic writing. Cognition, 24(1), 31-44. doi:10.1016/0010-0277(86)90003-X
    Repp, B. H., & Lin, H.-b. (1990). Integration of segmental and tonal information in speech perception: A cross-linguistic study. Journal of Phonetics, 18(4), 481-495. doi:10.1016/S0095-4470(19)30410-3
    Rossi, S., Jürgenson, I. B., Hanulíková, A., Telkemeyer, S., Wartenburger, I., & Obrig, H. (2011). Implicit processing of phonotactic cues: evidence from electrophysiological and vascular responses. Journal of Cognitive Neuroscience, 23(7), 1752-1764. doi:10.1162/jocn.2010.21547
    Schirmer, A., Tang, S.-L., Penney, T. B., Gunter, T. C., & Chen, H.-C. (2005). Brain Responses to Segmentally and Tonally Induced Semantic Violations in Cantonese. Journal of Cognitive Neuroscience, 17(1), 1-12. doi:10.1162/0898929052880057
    Shan, G., & Gerstenberger, S. (2017). Fisher’s exact approach for post hoc analysis of a chi-squared test. PloS one, 12(12), e0188709. doi:10.1371/journal.pone.0188709
    Silva, S., Vigário, M., Fernandez, B. L., Jerónimo, R., Alter, K., & Frota, S. (2019). The sense of sounds: Brain responses to phonotactic frequency, phonological grammar and lexical meaning. Frontiers in psychology, 10. doi:10.3389/fpsyg.2019.00681
    Simos, P. G., Diehl, R. L., Breier, J. I., Molis, M. R., Zouridakis, G., & Papanicolaou, A. C. (1998). MEG correlates of categorical perception of a voice onset time continuum in humans. Cognitive Brain Research, 7(2), 215-219. doi:10.1016/S0926-6410(98)00037-8
    Soto-Faraco, S., Sebastián-Gallés, N., & Cutler, A. (2001). Segmental and Suprasegmental Mismatch in Lexical Access. Journal of Memory and Language, 45(3), 412-432. doi:10.1006/jmla.2000.2783
    Steinberg, J., Truckenbrodt, H., & Jacobsen, T. (2010a). Activation and application of an obligatory phonotactic constraint in German during automatic speech processing is revealed by human event-related potentials. International Journal of Psychophysiology, 77(1), 13-20. doi:10.1016/j.ijpsycho.2010.03.011
    Steinberg, J., Truckenbrodt, H., & Jacobsen, T. (2010b). Preattentive Phonotactic Processing as Indexed by the Mismatch Negativity. Journal of Cognitive Neuroscience, 22(10), 2174-2185. doi:10.1162/jocn.2009.21408
    Steinberg, J., Truckenbrodt, H., & Jacobsen, T. (2011). Phonotactic constraint violations in German grammar are detected automatically in auditory speech processing: A human event-related potentials study. Psychophysiology, 48(9), 1208-1216. doi:10.1111/j.1469-8986.2011.01200.x
    Strauß, A., Kotz, S. A., Scharinger, M., & Obleser, J. (2014). Alpha and theta brain oscillations index dissociable processes in spoken word recognition. NeuroImage, 97, 387-395. doi:10.1016/j.neuroimage.2014.04.005
    Swaab, T. Y., Ledoux, K., Camblin, C. C., & Boudewyn, M. A. (2012). Language-related ERP components. In The Oxford handbook of event-related potential components. (pp. 397-439). New York: Oxford University Press.
    Taft, M., & Chen, H.-C. (1992). Judging Homophony in Chinese: The Influence of Tones. In H.-C. Chen & O. J. L. Tzeng (Eds.), Advances in Psychology (Vol. 90, pp. 151-172). North-Holland.
    Tai, J. H.-Y. (1978). Phonological changes in Modern Standard Chinese in the People’s Republic of China since 1949. Washington, DC: Office of Research United States InformationAgency.
    Tong, X., McBride, C., & Burnham, D. (2014). Cues for lexical tone perception in children: Acoustic correlates and phonetic context effects. Journal of Speech, Language, and Hearing Research, 57(5), 1589-1605. doi:10.1044/2014_JSLHR-S-13-0145
    Tong, Y., Francis, A. L., & Gandour, J. T. (2008). Processing dependencies between segmental and suprasegmental features in Mandarin Chinese. Language and Cognitive Processes, 23(5), 689-708. doi:10.1080/01690960701728261
    Tung, T'.-H. (1970). Hanyu Yinyunxue [Chinese Phonology]. Taipei: Xuesheng shuju.
    Ulbrich, C., Alday, P. M., Knaus, J., Orzechowska, P., & Wiese, R. (2016). The role of phonotactic principles in language processing. Language, Cognition and Neuroscience, 31(5), 662-682. doi:10.1080/23273798.2015.1136427
    van Boxtel, G. J. M., & Böcker, K. B. E. (2004). Cortical Measures of Anticipation. Journal of Psychophysiology, 18(2-3), 61-76. doi:10.1027/0269-8803.18.23.61
    Vitevitch, M. S., & Luce, P. A. (1998). When Words Compete: Levels of Processing in Perception of Spoken Words. Psychological Science, 9(4), 325-329. doi:10.1111/1467-9280.00064
    Vitevitch, M. S., & Luce, P. A. (1999). Probabilistic Phonotactics and Neighborhood Activation in Spoken Word Recognition. Journal of Memory and Language, 40(3), 374-408. doi:10.1006/jmla.1998.2618
    Wagner, M., Shafer, V. L., Martin, B., & Steinschneider, M. (2012). The phonotactic influence on the perception of a consonant cluster/pt/by native English and native Polish listeners: A behavioral and event related potential (ERP) study. Brain and language, 123(1), 30-41. doi:10.1016/j.bandl.2012.06.002
    Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, W. C., & Winter, A. L. (1964). Contingent Negative Variation : An Electric Sign of Sensori-Motor Association and Expectancy in the Human Brain. Nature, 203(4943), 380-384. doi:10.1038/203380a0
    Wang, H. S. (1998). An experimental study on the phonotactic constraints of Mandarin Chinese. Studia Linguistica Serica, 259-268.
    Whalen, D. H., & Xu, Y. (1992). Information for Mandarin Tones in the Amplitude Contour and in Brief Segments. Phonetica, 49(1), 25-47. doi:10.1159/000261901
    White, J., & Chiu, F. (2017). Disentangling phonological well-formedness and attestedness: An ERP study of onset clusters in English. Acta Linguistica Academica, 64(4), 513-537. doi:10.1556/2062.2017.64.4.2
    Wiener, S., & Ito, K. (2015). Do syllable-specific tonal probabilities guide lexical access? Evidence from Mandarin, Shanghai and Cantonese speakers. Language, Cognition and Neuroscience, 30(9), 1048-1060. doi:10.1080/23273798.2014.946934
    Wiener, S., & Ito, K. (2016). Impoverished acoustic input triggers probability-based tone processing in mono-dialectal Mandarin listeners. Journal of Phonetics, 56, 38-51. doi:10.1016/j.wocn.2016.02.001
    Wiener, S., & Turnbull, R. (2016). Constraints of tones, vowels and consonants on lexical selection in Mandarin Chinese. Language and Speech, 59(1), 59-82. doi:10.1177/0023830915578000
    Wiese, R. (1997). Underspecification and the description of Chinese vowels. In J. Wang & N. Smith (Eds.), Studies in Chinese Phonology (pp. 219-249). Mouton de Gruyter.
    Winsler, K., Midgley, K. J., Grainger, J., & Holcomb, P. J. (2018). An electrophysiological megastudy of spoken word recognition. Language, Cognition and Neuroscience, 33(8), 1063-1082. doi:10.1080/23273798.2018.1455985
    Xu, Y. (1997). Contextual tonal variations in Mandarin. Journal of Phonetics, 25(1), 61-83. doi:10.1006/jpho.1996.0034
    Yao, Y., & Sharma, B. (2017). What is in the neighborhood of a tonal syllable? Evidence from auditory lexical decision in Mandarin Chinese. Proceedings of the Linguistic Society of America, 2, 45-41-14.
    Ye, Y., & Connine, C. M. (1999). Processing spoken Chinese: The role of tone information. Language and Cognitive Processes, 14(5-6), 609-630. doi:10.1080/016909699386202
    Ylinen, S., Huuskonen, M., Mikkola, K., Saure, E., Sinkkonen, T., & Paavilainen, P. (2016). Predictive coding of phonological rules in auditory cortex: A mismatch negativity study. Brain and language, 162, 72-80. doi:10.1016/j.bandl.2016.08.007
    Yrttiaho, S., Tiitinen, H., May, P. J. C., Leino, S., & Alku, P. (2008). Cortical sensitivity to periodicity of speech sounds. The Journal of the Acoustical Society of America, 123(4), 2191-2199. doi:10.1121/1.2888489
    Zaehle, T., Jancke, L., & Meyer, M. (2007). Electrical brain imaging evidences left auditory cortex involvement in speech and non-speech discrimination based on temporal features. Behavioral and Brain Functions, 3(1), 63. doi:10.1186/1744-9081-3-63
    Zhan, H.-Z. (1984). Guoyin │Z│ zai taiwan de fazhan zhuangkuang--shehuiyuyanxue yanjiu [The development of Mandarin |Z| in Taiwan: a sociolinguistic study] (Unpublished master's thesis). Fu Jen Catholic University, Taipei, Taiwan. Retrieved from https://hdl.handle.net/11296/37b82k
    Zhao, J., Guo, J., Zhou, F., & Shu, H. (2011). Time course of Chinese monosyllabic spoken word recognition: Evidence from ERP analyses. Neuropsychologia, 49(7), 1761-1770. doi:10.1016/j.neuropsychologia.2011.02.054
    Zhou, X. (1992). The mental representation of Chinese disyllabic words (Unpublished doctoral dissertation). University of Cambridge, Cambridge, England.
    Zhou, X., & Marslen-Wilson, W. D. (1992). The morphological priming effects in Chinese compound words. Paper presented at the 25th International Congress of Psychology, Brussels.
    Zhou, X., & Marslen-wilson, W. D. (1994). Words, morphemes and syllables in the Chinese mental lexicon. Language and Cognitive Processes, 9(3), 393-422. doi:10.1080/01690969408402125

    QR CODE