研究生: |
張信務 Hsin-wu Chang |
---|---|
論文名稱: |
二氧化鈦奈米管之合成與結構鑑定 The Synthesis and Characterization of Titanium Dioxide Nanotubes |
指導教授: |
李志浩
Chih-hao Lee |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 二氧化鈦 、捲片法 、Anatase 、奈米管 |
外文關鍵詞: | titanium oxide, rolling-up method, anatase phase, nanotubes |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用水熱合成法來製備高純度二氧化鈦奈米管,其實驗方法簡單並可得大量產物。而我們所製備出的高純度二氧化鈦奈米管,因其且具有高表面積比的特性,故能有效的提升二氧化鈦的光催化反應效率,本實驗之主要目的乃著重於對二氧化鈦奈米管進行結構及生成機制上的分析與討論。
我們所使用的工具共分成五種,包括SEM、TEM、X光粉末繞射、拉曼光譜、X光吸收光譜。在SEM與TEM上,我們皆觀察到奈米管狀物的生成,且經由選區電子繞射的標定,我們可決定出管軸的方向為[010]方向,捲軸方向則為[001]方向,而此一模型亦可由HRTEM得到印證。從XRD中,我們提出了晶格參數產生變化的假設。而從拉曼光譜中,我們觀察到了二氧化鈦Anatase晶相的消失與震動模態的被破壞。在XAS的分析結果中,我們觀察到了鍵長與配位數隨著與NaOH水溶液反應時間不同所做的變化。
綜合上述實驗結果,我們提出了以捲片法為主要,溶解堆積法為次要的二氧化鈦奈米管生成機制。其結構則為以(101)晶面作為其管壁面,(010)晶面作為其管壁橫截面。並在與NaOH水溶液反應24小時候,開始大量產生內徑20-70 nm、外徑30-80 nm、長度數十μm的二氧化鈦奈米管。
Titanium oxide nanotubes can be prepared in a large quantities by hydrothermal method, which is simple to follow and produce a high degree of purity of titanium oxide nanotubes. Because of the high specific surface area ratio of titanium oxide nanotubes we prepared, the photocatalytic efficiency can be raised up effectively. And the major objective of this thesis aims at the analysis and discussion of the structure and formation mechanism of titanium oxide nanotubes.
There are five kinds of tools we use in this thesis for probing the structure and formation mechanism of titanium oxide nanotubes, including SEM、TEM、X-ray powder diffraction、Raman spectroscopy and X-ray absorption spectrum. From the SEM and TEM results, we observe the tube-like materials and its formation process. From the SAED result, we determine the tube axis and rolling-up axis are [010] and [001] direction respectively, and this model also can be confirmed by HRTEM result. From the XRD result, we propose the change of lattice constants. From the Raman spectroscopy, we observe the disappearance of titanium oxide anatase phase and the destruction of its vibration modes. From the XAS analysis result, we observe the bond distance and coordination numbers change for the reaction time with NaOH solution.
To combine all of the experimental results above, we propose the formation mechanism which includes the rolling-up method for the most part and stacking-up method for minor importance. And the anatase (101) plane constructs the tube wall surface, the anatase (010) plane constructs cross-section surface of tube. After reacting with NaOH solution for 24 hours, the titanium oxide nanotubes which have the inner diameter of 20-70 nm, outer diameter of 30-80 nm and length of several μm are prepared.
[1] S. Iijima, Nature 354 (1991) 56.
[2] B. C. Satishkumar, A. Govindaraj, E. M. Vogl, L. Basumallick, C. N. R. Rao, J. Mater. Res. 12 (1997) 604.
[3] H. Nakamura and Y. Matsui, J. Am. Chem. Soc. 117 (1995) 2651.
[4] B. B. Lakshmi, C. J. Patrissi and C. R. Martin, Chem. Mater. 9 (1997) 2544.
[5] S. Kobayashi, K. Hanabusa, N. Hamasaki, M. Kimura and H. Shirai, Chem. Mater. 12 (2000) 1523.
[6] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Langmuir 14 (1998) 3160.
[7] K. Vinodgopal, S. Hotchandani and P. V. Kamat, J. Phys. Chem. 97 (1993) 9040.
[8] G. Dagan and M. Tomkiewicz, J. Phys. Chem. 97 (1993) 12651.
[9] M. Gratzel, Nature 409 (2001) 575.
[10] A. L. Linsebigler, G. Lu and J. T. Yates, Chem. Rev. 95 (1995) 735.
[11] A. Fujishima and K. Honda, Nature 238 (1972) 37.
[12] R. Neuendort, M. Quentin and U. Keiling, J. Chem. Phys. 104 (1996) 6348.
[13] P. W. Atkins, Heterogeneous Catalysis, J. Phys. Chem., Oxford University, (1995) pp.735-758
[14] R. L. Kurtz, R. Stockbauer, T. E. Maday, E. Roman and J. L. de Segovia, Surf. Sci. 218 (1989) 178.
[15] D. S. Seo, J. K. Lee and H. Kim, J. Cryst. Growth 229 (2001) 428.
[16] C. N. R. Rao, B. C. Satishkumar, A. Govindaraj, E. M. Vogl and L. Basumallick, J. Mater. Res. 12 (1997) 604.
[17] H. C. Zeng, S. M. Liu, L. M. Gan, L. H. Liu and W. D. Zhang, Chem. Mater. 14 (2002) 1391.
[18] Y. Bando, M. Zhang and K. Wada, J. Mater. Sci. Lett. 20 (2001) 167.
[19] H. Imai, Y. Takei, K. Shimizu, M. Matsuda and H. Hirashima, J. Mater. Chem. 9 (1999) 2971.
[20] H. Imai, M. Matsuta, K. Shimizu, H. Hirashima, and N. Negishi, J. Mater. Chem. 10 (2000) 2005.
[21] P. Hoyer, Langmuir 12 (1996) 1411.
[22] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Adv. Mater. 11 (1999) 15.
[23] L. S. Dubrovinsky, N. A. Dubrovinskaia, V. Swamy, J. Muscat, N. M. Harrison, R. Ahuja, B. Holm and B. Johansson, Nature 410 (2001) 653.
[24] A. Zangwill, Physics at Surfaces, 1988.
[25] K. Tanaka, V. Capule and T. Hisanaga, Chem. Phys. Lett. 18 (1991) 73.
[26] B. Ohtani, Y. Ogawa and S. Nishimoto, J. Phys. Chem. 101 (1997) 3746.
[27] G. Q. Lu, Z. Ding and P. F. Greenfield, J. Phys. Chem. 104 (2000) 4815.
[28] C. H. Lin, S. H. Chien, J. H. Chao, C. Y. Sheu, Y. C. Cheng, Y. J. Huang and C. H. Tsai, Catalyst Lett. 80 (2002) 153.
[29] 鄭祐誠,國立彰化師範大學化學研究所碩士論文,2003。
[30] 許樹恩、吳泰伯,X光繞射原理與材料結構分析,中國材料科學學會,1992。
[31] 陳力俊,材料電子顯微鏡學,行政院國家科學委員會,精密儀器發展中心,1984。
[32] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Adv. Mater. 11 (1999) 1307.
[33] B. A. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. Y. Yang and N. Wang, Appl. Phys. Lett. 82 (2003) 281.
[34] C. A. Melendres, A. Narayanasamy, V. A. Maroni and R. W. Siegel, J. Mater. Res. 4 (1989) 1246.
[35] M. Lazzeri, A. Vittadini and A. Selloni, Phys. Rev. B 63 (2001) 155409.
[36] M. Lazzeri, A. Vittadini and A. Selloni, Phys. Rev. B 65 (2002) 119901.
[37] Y. H. Zhang, C. K. Chan, J. F. Porter and W. Guo, J. Mater. Res. 13 (1998) 2602.
[38] D. Bersani, P. P. Lottici and X. Z. Ding, Appl. Phys. Lett. 72 (1998) 73.
[39] W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin and Q. Chen, J. Phys. D 33 (2000) 912.
[40] J. C. Parker and R. W. Siegei, Appl. Phys. Lett. 57 (1990) 543.
[41] R. Ma, Y. Bando and T. Sasaki, J. Phys. Chem. 108 (2004) 2115.
[42] T. Ohsaka, S. Yamaoka and O. Shimomura, Solid State Commun. 30 (1979) 345.
[43] C. A. Melendres, A. Narayanasamy, V. A. Maroni and R. W. Siegei, J. Mater. Res. 4 (1989) 1246.
[44] J. C. Parker and R. W. Siegei, J. Mater. Res. 5 (1990) 1246.
[45] P. P. Lottici, D. Bersani and A. Montenero, J. Mater. Sci. 28 (1993) 177.
[46] E. Haro-Poniatowski, R. Rodriguez-Talavera, M. de la Cruz-Heredia, O. Cano-Corona and R. Arroyo-Murillo, J. Mater. Res. 9 (1994) 2102.
[47] A. Chaves, K. S. Katiyan and S. P. S. Proto, Phys. Rev B 10 (1974) 3522.
[48] G. A. Tompsett, G. A. Bowmaker, B. P. Cooney, J. B. Metson, K. A. Rodgers and J. M. Seakins, J. Raman Spectrosc. 26 (1995) 57.
[49] F. Frages, G. E. Brown, Jr. and J. J. Rehr, Phys. Rev. B 56 (1997) 1809.
[50] L. X. Chen, T. Rajh, W. Jager, J. Nedelikovic and M. C. Thurnauer, J. Synchrotron Rad. 6 (1999) 445.
[51] T. Ohsaka, F. Izumi and Y. Fujiki, J. Raman Spectrosc. 7 (1978) 321.