研究生: |
黃睿夫 Rei-Fu Huang |
---|---|
論文名稱: |
隨機存取記憶體與磁性隨機存取記憶體之測試、診斷與修復 Testing, Diagnosis, and Repair of RAM and MRAM |
指導教授: |
吳誠文
Cheng-Wen Wu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 151 |
中文關鍵詞: | 自我修復 、記憶體診斷 、記憶體修復 、記憶體測試 、半導體記憶體 、量率改善 |
外文關鍵詞: | built-in self-repair,, design-for-testability (DFT),, memory diagnostics,, memory repair,, memory testing,, semiconductor memory,, yield enhancement, parallel testing,, parallel diagnosis,, built-in self-diagnosis, design-for-manufacturability (DFM),, redundancy analysis,, test economics,, early-market-entry benefit,, delay testing, embedded memory,, critical path,, word-line delay fault,, bit-line delay fault,, word-line propagation delay fault,, bit-line coupling fault,, test algorithm, failure analysis,, fault model,, magnetic random access memory (MRAM),, non-volatile memory |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著半導體技術的進步與系統晶片的整合,有越來越多的問題等待解決,在半導體記憶體方面也是同樣的面臨許多重大的問題:1. 因為記憶體的增加,測試時間與測試資料量也大幅的增加,而記憶體的量率則是相對的大幅減低;2. 記憶體的工作速度也隨著製程技術的進步而變快,所以延遲錯誤也出現於記憶體之中;3. 非揮發性記憶體的大幅使用開啟了許許多多新型記憶體的開發,而這些新型記憶體的測試卻尚待解決。這些問題限制了半導體記憶體的發展與應用。在本論文中,針對了這些記憶體的問題提供了相對的解決辦法。在記憶體增大的問題,開發出了以症狀識別為基礎的壓縮方法,此方法可以將大部分記憶體測試所產生的錯誤訊息壓縮至6%以下。為了減少測試與診斷的時間,本論也文提供的平行式測試與診斷的方法也可以將時間減少為原本的25%。而為了改進因面積增加而低落的記憶體量率,本論文提供了一套軟體RAISIN可以用來評估多餘記憶體的配置與相對演算法的效率;本論文也更進一步做了經濟面評估,探討多餘記憶體的加入與整體獲利的相對關係。為了解決操作速度而引起的延遲錯誤,本論文也針對兩種最常見的嵌入式記憶體(SRAM與DRAM)提供了延遲錯誤的測試演算法,此演算法並不會增加很多測試時間而且可以有效的偵測出記憶體的延遲錯誤。在非揮發性記憶體方面,本論文針對很有潛力的非揮發性記憶體MRAM做了詳細的缺陷分析,並建立的相關的錯誤模型,而且提供了測試演算法,此為磁性隨機存取記憶體測試提供了較系統性的測試方法。基於本論文提供的這些關於測試訊息壓縮、平行測試診斷、自我修復評估、延遲錯誤測試、磁性隨機存取記憶體測試的方法,可以有效的解決很多記憶體所面臨重要問題。
With the advent of deep submicron technology, system-on-chip
(SOC) design methodology, heterogeneous cores from different
sources can be integrated in a single chip that contains millions
of gates. However, the yield of such a large chip is usually too
low to be profitable, therefore, yield enhancement is an
important issue in SOC product development. Memory cores are
among most widely used cores of SOC integration, and an SOC that
contains hundreds of SRAM cores is not uncommon today. Memory
cores tend to dominate the SOC yield because they usually have a
high silicon density and large area characters. Consequently,
improving the yield of embedded memory is key in improving chip
yield. The many factors of yield enhancement can be divided into
some topics. First, memory diagnosis is needed, but the size of
test data increases exponentially as the size of memory
increases. Thus, fault pattern compression is needed to reduce
the size of the test data. Because of the large number of memory
cores in a chip, parallel testing and diagnosis is also needed to
reduce test time/cost. Secondly, after diagnosis of the memory
core, redundancy repair can improve the yield of memory. The
repair mechanism has many factors, such as redundancy analysis
(RA) algorithm selection, spare element types, and the number of
the spare elements. How to select these factors, which affect
the efficiency of RA performance and the benefit of the built-in
self-repair (BISR) design, needs to predict and evaluate. Timing
issues become more important with advance in process technology,
but they are difficult to test by built-in self-test mechanisms.
Additionally, non-volatile memory requirements have increased
recently, and there are many types of non-volatile memories. The
testing of the new memory types is also a new challenge.
In this paper, we present a few solutions for the important
memory issues. First, we propose a method for fail pattern
compression based on fail pattern identification, which can
compress data up to 6\%. The parallel diagnosis scheme proposed
in this paper reduces test/diagnosis time significantly: up to
25\% in the 512$\times$32 memory core. Additionally, an
efficient simulator RAISIN is proposed to evaluate the
performance and the benefit of the BISR circuit. The delay fault
behavior of embedded memory (including SRAM and DRAM) have been
analyzed and the efficient test algorithms are also proposed.
The proposed new test algorithms do not increase much time
complexity. For example, the test algorithm for SRAM is only
$10N+6k$ after integrated with March C$-$ test algorithm, which
only increases $6k$. Where $k$ is the word count in a row. The
magnetic random access memory (MRAM) is considered one of the
potential candidates that will replace the current memories (RAM,
EEPROM, and flash memory) in the future. In this work we
classify and analyze the MRAM defects and their behavior, and
propose its fault models. The circuit has been implemented and
fabricated with a new 0.18$\mu$m technology. The simulation
results regarding the correlation between the defects and
conventional fault models show that most defects are covered by
the stuck-at fault model. The test data based on the fabricated
chips show that the stuck-at faults do cover most of the defects
on the chips. However, from the experiment we also have
identified two new faults, i.e., the Multi-Victims fault and Kink
fault. The proposed approaches resolve the important memory
issues efficiently, including test data compression, parallel
testing, BISR design and evaluation, timing testing of embedded
memories, and MRAM fault modeling and testing.
\bibitem{cww00.16}
C.~Cheng, C.-T. Huang, J.-R. Huang, C.-W. Wu, C.-J. Wey, and M.-C. Tsai,
``{BRAINS}: A {BIST} complier for embedded memories'',
in \emph{Proc. IEEE Int. Symp. Defect and Fault Tolerance in VLSI Systems
(DFT)}, Yamanashi, Oct. 2000, pp. 299--307.
\bibitem{SIA01.1}
{Semiconductor Industry Association},
``International technology roadmap for semiconductors {(ITRS)}, 2001 edition'',
Dec. 2001.
\bibitem{Barth03.1}
R.~Barth,
``{ITRS} commodity memory roadmap'',
in \emph{Proc. IEEE Int. Workshop on Memory Technology, Design and Testing
(MTDT)}, San Jose, July 2003, pp. 61--63.
\bibitem{Voll00.1}
J.~Vollrath, U.~Lederer, and T.~Hladschik,
``Compressed bit fail maps for memory fail pattern classification'',
in \emph{Proc. IEEE European Test Workship (ETW)}, 2000, pp. 125--130.
\bibitem{Benso00.1}
A.~Benso, S.~{Di Carlo}, G.~{Di Natale}, P.~Prinetto, and M.~Lobetti-Bodorni,
``A programmable {BIST} architecture for clusters of multiple-port {SRAMs}'',
in \emph{Proc. Int. Test Conf. (ITC)}, 2000, pp. 557--566.
\bibitem{Roch96.1}
R.~Rajsuman,
``{RAMBIST} builder: A methodology for automatic built-in self-test design of
embedded {RAMs}'',
in \emph{Proc. IEEE Int. Workshop on Memory Technology, Design and Testing
(MTDT)}, San Jose, 1996, pp. 50--56.
\bibitem{Zarr99.2}
K.~Zarrineh and S.~J. Upadhyaya,
``On programmable memory built-in self test architecutres'',
in \emph{Proc. Design, Automation and Test in Europe (DATE)}, Paris, Mar. 1999,
pp. 708--713.
\bibitem{SIA03.1}
{Semiconductor Industry Association},
``International technology roadmap for semiconductors {(ITRS)}, 2003 edition'',
Dec. 2003.
\bibitem{Krst99.1}
A.~Krstic and K.-T. Cheng,
\emph{Delay Fault Testing for VLSI Circuits},
Kluwer Academic Publishers, Boston, 1999.
\bibitem{Engel02.1}
B.~N. Engel, N.~D. Rizzo, J.~Janesky, J.~M. Slaughter, R.~Dave, M.~DeHerrera,
M.~Durlam, and S.~Tehrani,
``The science and technology of magnetoresistive tunneling memory'',
\emph{IEEE Trans. Nanotechnology}, vol. 1, no. 1, pp. 32--38, Mar. 2002.
\bibitem{Park03.1}
S.~Parkin, X.~Jiang, C.~Kaiser, A.~Panchula, K.~Roche, and M.~Samant,
``Magnetically engineered spintronic sensors and memory'',
\emph{Proc. of the IEEE}, vol. 91, no. 5, pp. 661--680, May 2003.
\bibitem{Sinc98.1}
R.~A. Sinclair, S.~A. Mundon, S.~C. Aryal, and C.~M. Sinclair,
``A practical {256K GMR NV} memory for high shock applications'',
in \emph{Proc. Nonvolatile Memory Technology Conf.}, June 1998, pp. 38--42.
\bibitem{Reohr02.1}
W.~Reohr, H.~Honigschmid, R.~Robertazzi, D.~Gogl, F.~Pesavento, S.~Lammers,
K.~Lewis, C.~Arndt, Y.~Lu, H.~Viehmann, R.~Scheuerlein, L.-K. Wang,
P.~Trouilloud, S.~Parkin, W.~Gallagher, and G.~Muller,
``Memories of tomorrow'',
\emph{IEEE Circuits and Devices}, vol. 18, no. 5, pp. 17--27, Sept. 2002.
\bibitem{Bette03.1}
A.~Bette, J.~DeBrosse, D.~Gogl, H.~Hoenigschmid, R.~Robertazzi, C.~Arndt,
D.~Braun, D.~Casarotto, R.~Havreluk, S.~Lammers, W.~Obermaier, W.~Reohr,
H.~Viehmann, W.~J. Gallagher, and G.~Muller,
``A high-speed {128Kbit MRAM} core for future universal memory applications'',
in \emph{Symp. VLSI Circuits, Digest of Technical Papers}, June 2003, pp.
217--220.
\bibitem{Durl03.1}
M.~Durlam, P.~J. Naji, A.~Omair, M.~DeHerrera, J.~Calder, J.~M. Slaughter,
B.~N. Engel, N.~D. Rizzo, G.~Grynkewich, B.~Butcher, C.~Tracy, K.~Smith,
K.~W. Kyler, J.~J. Ren, J.~A. Molla, W.~A. Feil, R.~G. Williams, and
S.~Tehrani,
``A {1-Mbit MRAM} based on {1T1MTJ} bit cell integrated with copper
interconnects'',
\emph{IEEE Journal of Solid-State Circuits}, vol. 38, no. 5, pp. 769--773, May
2003.
\bibitem{Honda03.1}
T.~Honda, N.~Sakimura, T.~Sugibayashi, S.~Miura, H.~Numata, H.~Hada, and
S.~Tahara,
``{MRAM}-writing circuitry to compensate for thermal-variation of
magnetization-reversal current'',
in \emph{Symp. VLSI Circuits, Digest of Technical Papers}, June 2002, pp.
156--157.
\bibitem{Hung03.1}
C.-C. Hung, M.-J. Kao, W.-C. Lin, S.~Chao, D.~Tang, and M.-J. Tsai,
``Low writing current magnetoresistive random access memory {(MRAM)} with side
metal pillar write word line {(PWWL)}'',
in \emph{Int. Symp. Advanced Magnetic Technologies}, Taipei, Nov. 2003.
\bibitem{Kim03.1}
H.~J. Kim, W.~C. Jeong, K.~H. Koh, G.~J. Jeong, J.~H. Park, S.~Y. Lee, J.~H.
Oh, I.~H. Song, H.~S. Jeong, and K.~Kim,
``A process integration of high-performance {64-Kb MRAM}'',
\emph{IEEE Trans. Magnetics}, vol. 39, no. 5, pp. 2851--2853, Sept. 2003.
\bibitem{Gogl05.1}
D.~Gogl, C.~Arndt, J.~C. Barwin, A.~Bette, J.~DeBrosse, E.~Gow,
H.~Hoenigschmid, S.~Lammers, M.~Lamorey, L.~Yu, T.~Maffitt, K.~Maloney,
W.~Obermaier, A.~Sturm, H.~Viehmann, D.~Willmott, M.~Wood, W.~J. Gallagher,
G.~Mueller, and A.~R. Sitaram,
``A {16-Mb MRAM} featuring bootstrapped write drivers'',
\emph{IEEE Journal of Solid-State Circuits}, vol. 40, no. 4, pp. 902--908, Apr.
2005.
\bibitem{cww99.1}
C.-T. Huang, J.-R. Huang, C.-F. Wu, C.-W. Wu, and T.-Y. Chang,
``A programmable {BIST} core for embedded {DRAM}'',
\emph{IEEE Design \& Test of Computers}, vol. 16, no. 1, pp. 59--70, Jan.-Mar.
1999.
\bibitem{Treu93.1}
R.~P. Treuer and V.~K. Agarwal,
``Built-in self-diagnosis for repairable embedded {RAMs}'',
\emph{IEEE Design \& Test of Computers}, vol. 10, no. 2, pp. 24--33, June 1993.
\bibitem{Camu95.1}
P.~Camurati, P.~Prinetto, M.~S. Reorda, S.~Barbagallo, A.~Burri, and D.~Medina,
``Industrial {BIST} of embedded {RAMs}'',
\emph{IEEE Design \& Test of Computers}, vol. 12, no. 3, pp. 86--95, Fall 1995.
\bibitem{Zori98.1}
Y.~Zorian, E.~J. Marinissen, and S.~Dey,
``Testing embedded-core based system chips'',
in \emph{Proc. Int. Test Conf. (ITC)}, Oct. 1998, pp. 130--143.
\bibitem{cww01.15}
C.-W. Wang, R.-S. Tzeng, C.-F. Wu, C.-T. Huang, C.-W. Wu, S.-Y. Huang, S.-H.
Lin, and H.-P. Wang,
``A built-in self-test and self-diagnosis scheme for heterogeneous {SRAM}
clusters'',
in \emph{Proc. Tenth IEEE Asian Test Symp. (ATS)}, Kyoto, Nov. 2001, pp.
103--108.
\bibitem{cww02.3}
C.-W. Wang, C.-F. Wu, J.-F. Li, C.-W. Wu, T.~Teng, K.~Chiu, and H.-P. Lin,
``A built-in self-test and self-diagnosis scheme for embedded {SRAM}'',
\emph{J. Electronic Testing: Theory and Applications}, vol. 18, no. 6, pp.
637--647, Dec. 2002.
\bibitem{Chen01.1}
J.~T. Chen, J.~Rajski, J.~Khare, O.~Kebichi, and W.~Maly,
``Enabling embedded memory diagnosis via test response compression'',
in \emph{Proc. IEEE VLSI Test Symp. (VTS)}, Marina Del Rey, California, Apr.
2001, pp. 292--298.
\bibitem{Chen01.2}
J.~T. Chen, J.~Khare, K.~Walker, S.~Shaikh, J.~Rajski, and W.~Maly,
``Test response compression and bitmap encoding for embedded memories in
manufacturing process monitoring'',
in \emph{Proc. Int. Test Conf. (ITC)}, Baltmore, Oct. 2001, pp. 258--267.
\bibitem{Yarm98.2}
V.~N. Yarmolik, S.~Hellebrand, and H.~Wunderlich,
``Self-adjusting output data compression: An efficient {BIST} technique for
{RAM}s'',
in \emph{Proc. Design, Automation and Test in Europe (DATE)}, 1998, pp.
173--179.
\bibitem{Hell99.1}
S.~Hellebrand, H.~Wunderlich, A.~Ivaniuk, Y.~Klimets, and V.~N. Yarmolik,
``Error detecting refreshment for embedded {DRAM}s'',
in \emph{Proc. IEEE VLSI Test Symp. (VTS)}, 1999, pp. 384--390.
\bibitem{Hell02.1}
S.~Hellebrand, H.~Wunderlich, A.~Ivaniuk, Y.~Klimets, and V.~N. Yarmolik,
``Efficient online and offline testing of embedded {DRAM}s'',
\emph{IEEE Trans. Computers}, vol. 51, no. 7, pp. 801--809, July 2002.
\bibitem{cww02.8}
J.-F. Li, R.-S. Tzeng, and C.-W. Wu,
``Diagnostic data compression techniques for embedded memories with built-in
self-test'',
\emph{J. Electronic Testing: Theory and Applications}, vol. 18, no. 4-5, pp.
515--527, Aug.-Oct. 2002.
\bibitem{Zori02.1}
Y.~Zorian,
``Embedded memory test \& repair: infrastructure {IP} for {SOC} yield'',
in \emph{Proc. Int. Test Conf. (ITC)}, Baltmore, Oct. 2002, pp. 340--349.
\bibitem{Zori03.1}
Y.~Zorian and S.~Shoukourian,
``Embedded-memory test and repair: Infrastructure {IP} for {SoC} yield'',
\emph{IEEE Design \& Test of Computers}, vol. 20, pp. 58--66, May-June 2003.
\bibitem{Kawa00.1}
T.~Kawagoe, J.~Ohtani, M.~Niiro, T.~Ooishi, M.~Hamada, and H.~Hidaka,
``A built-in self-repair analyzer ({CRESTA}) for embedded {DRAM}s'',
in \emph{Proc. Int. Test Conf. (ITC)}, 2000, pp. 567--574.
\bibitem{Sawa89.1}
K.~Sawada, T.~Sakurai, Y.~Uchino, and K.~Yamada,
``Built-in self-repair circuit for high-density {ASMIC}'',
in \emph{Proc. IEEE Custom Integrated Circuits Conf. (CICC)}, May 1989, pp.
26.1/1--26.1/4.
\bibitem{Kim98.1}
I.~Kim, Y.~Zorian, G.~Komoriya, H.~Pham, F.~P. Higgins, and J.~L. Lweandowski,
``Built in self repair for embedded high density {SRAM}'',
in \emph{Proc. Int. Test Conf. (ITC)}, Oct. 1998, pp. 1112--1119.
\bibitem{cww03.16}
J.-F. Li, J.-C. Yeh, R.-F. Huang, C.-W. Wu, P.-Y. Tsai, A.~Hsu, and E.~Chow,
``A built-in self-repair scheme for semiconductor memories with {2-D}
redundancy'',
in \emph{Proc. Int. Test Conf. (ITC)}, Charlotte, Sept. 2003, pp. 393--402.
\bibitem{Nico03.1}
M.~Nicolaidis, N.~Achouri, and S.~Boutobza,
``Optimal reconfiguration functions for column or data-bit built-in
self-repair'',
in \emph{Proc. Design, Automation and Test in Europe (DATE)}, Munich, Mar.
2003, pp. 590--595.
\bibitem{Nico03.2}
M.~Nicolaidis, N.~Achouri, and S.~Boutobza,
``Dynamic data-bit memory built-in self- repair'',
in \emph{Proc. IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD)}, San Jose,
Nov. 2003, pp. 588--594.
\bibitem{Benso02.1}
A.~Benso, S.~Chiusano, G.~Di Natale, and P.~Prinetto,
``An on-line {BIST RAM} architecture with self-repair capabilities'',
\emph{IEEE Trans. Reliability}, vol. 51, no. 1, pp. 123--128, Mar. 2002.
\bibitem{cww04.13}
C.-L. Su, R.-F. Huang, C.-W. Wu, C.-C. Hung, M.-J. Kao, Y.-J. Chang, and W.-C.
Wu,
``{MRAM} defect analysis and fault modeling'',
in \emph{Proc. Int. Test Conf. (ITC)}, Charlotte, Oct. 2004.
\bibitem{Goor98.4}
A.~J. van~de Goor,
\emph{Testing Semiconductor Memories: Theory and Practice},
ComTex Publishing, Gouda, The Netherlands, 1998.
\bibitem{Nigg01.1}
D.~Niggemeyer and E.~Rudnick,
``Automatic generation of diagnostic {March} tests'',
in \emph{Proc. IEEE VLSI Test Symp. (VTS)}, Marina Del Rey, California, Apr.
2001, pp. 299--304.
\bibitem{cww01.12}
J.-F Li, K.-L. Cheng, C.-T. Huang, and C.-W. Wu,
``March-based {RAM} diagnosis algorithms for stuck-at and coupling faults'',
in \emph{Proc. Int. Test Conf. (ITC)}, Baltmore, Oct. 2001, pp. 758--767.
\bibitem{cww02.4}
C.-F. Wu, C.-T. Huang, K.-L. Cheng, and C.-W. Wu,
``Fault simulation and test algorithm generation for random access memories'',
\emph{IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems},
vol. 21, no. 4, pp. 480--490, Apr. 2002.
\bibitem{cww03.3}
C.-W. Wang, K.-L. Cheng, C.-T. Huang, and C.-W. Wu,
``Test and diagnosis of word-oriented multiport memories'',
in \emph{Proc. IEEE VLSI Test Symp. (VTS)}, Napa Valley, Apr. 2003, pp.
248--253.
\bibitem{cww00.17}
C.-F. Wu, C.-T. Huang, C.-W. Wang, K.-L. Cheng, and C.-W. Wu,
``Error catch and analysis for semiconductor memories using {March} tests'',
in \emph{Proc. IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD)}, San Jose,
Nov. 2000, pp. 468--471.
\bibitem{Kuo87.1}
S.-Y. Kuo and W.~K. Fuchs,
``Efficient spare allocation in reconfigurable arrays'',
\emph{IEEE Design \& Test of Computers}, vol. 4, no. 1, pp. 24--31, Feb. 1987.
\bibitem{cww02.11}
R.-F. Huang, J.-F. Li, J.-C. Yeh, and C.-W. Wu,
``A simulator for evaluating redundancy analysis algorithms of repairable
embedded memories'',
in \emph{Proc. IEEE Int. Workshop on Memory Technology, Design and Testing
(MTDT)}, Isle of Bendor, France, July 2002, pp. 68--73.
\bibitem{cww03.10}
C.-T. Huang, C.-F. Wu, J.-F. Li, and C.-W. Wu,
``Built-in redundancy analysis for memory yield improvement'',
\emph{IEEE Trans. Reliability}, vol. 52, no. 4, pp. 386--399, Dec. 2003.
\bibitem{Tarr84.1}
M.~Tarr, D.~Boudreau, and R.~Murphy,
``Defect analysis system speeds test and repair of redundant memories'',
\emph{Electronics}, pp. 175--179, Jan. 12 1984.
\bibitem{Mak98.1}
T.~M. Mak, D.~Bhattacharya, C.~Prunty, B.~Roeder, N.~Ramadan, J.~Ferguson, and
Y.~Jianlin,
``Cache {RAM} inductive fault analysis with fab defect modeling'',
in \emph{Proc. Int. Test Conf. (ITC)}, Oct. 1998, pp. 862--871.
\bibitem{Jee00.1}
A.~Jee, J.~E. Colburn, V.~S. Irrinki, and M.~Puri,
``Optimizing memory tests by analyzing defect coverage'',
in \emph{Proc. IEEE Int. Workshop on Memory Technology, Design and Testing
(MTDT)}, San Jose, Aug. 2000, pp. 20--25.
\bibitem{Jee02.1}
A.~Jee,
``Defect-oriented analysis of memory {BIST} tests'',
in \emph{Proc. IEEE Int. Workshop on Memory Technology, Design and Testing
(MTDT)}, Isle of Bendor, France, July 2002, pp. 7--11.
\bibitem{Goor00.2}
S.~Hamdioui and A.~J. van~de Goor,
``An experimental analysis of spot defects in {SRAMs}: realistic fault models
and tests'',
in \emph{Proc. Ninth IEEE Asian Test Symp. (ATS)}, Taipei, Dec. 2000, pp.
131--138.
\bibitem{Goor01.2}
Z.~Al-Ars, A.~J. van~de Goor, J.~Braun, and D.~Richter,
``Simulation based analysis of temperature effect on the faulty behavior of
embedded {DRAMs}'',
in \emph{Proc. Int. Test Conf. (ITC)}, Baltmore, Oct. 2001, pp. 783--792.
\bibitem{Goor02.4}
Z.~Al-Ars and A.~J. van~de Goor,
``Approximating infinite dynamic behavior for {DRAMs} cell defects'',
in \emph{Proc. IEEE VLSI Test Symp. (VTS)}, Monterey, California, Apr. 2002,
pp. 401--406.
\bibitem{cww03.15}
C.-W. Wang, K.-L. Cheng, J.-N. Lee, Y.-F. Chou, C.-T. Huang, C.-W. Wu,
F.~Huang, and H.-T. Yang,
``Fault pattern oriented defect diagnosis for memories'',
in \emph{Proc. Int. Test Conf. (ITC)}, Charlotte, Sept. 2003, pp. 29--38.
\bibitem{cww03.24}
R.-F. Huang, Y.-F. Chou, and C.-W. Wu,
``Defect oriented fault analysis for {SRAM}'',
in \emph{Proc. 12th IEEE Asian Test Symp. (ATS)}, Xian, Nov. 2003, pp.
256--261.
\bibitem{cww04.2}
R.-F. Huang, Y.-T. Lai, Y.-F. Chou, and C.-W. Wu,
``{SRAM} delay fault modeling and test algorithm development'',
in \emph{Proc. Asia and South Pacific Design Automation Conf. (ASP-DAC)},
Yokohama, Jan. 2004, pp. 104--109.
\bibitem{Kim97.2}
V.-K. Kim and T.~Chen,
``Assessing {SRAM} test coverage for sub-micron {CMOS} technologies'',
in \emph{Proc. IEEE VLSI Test Symp. (VTS)}, Monterey, Apr. 1997, pp. 24--30.
\bibitem{Kim99.1}
V.-K. Kim and T.~Chen,
``On comparing functional fault coverage and defect coverage for memory
testing'',
\emph{IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems},
vol. 18, no. 11, pp. 1676--1683, Nov. 1999.
\bibitem{Chen01.3}
L.-C. Chen, T.~M. Mak, M.~A. Breuer, and S.~K. Gupta,
``Crosstalk test generation on pseudo industrial circuits: a case study'',
in \emph{Proc. Int. Test Conf. (ITC)}, Baltmore, Oct. 2001, pp. 548--557.
\bibitem{Iraj03.1}
S.~Irajpour, S.~Nazarian, S.~K. Gupta, and M.~A. Breuer,
``Analyzing crosstalk in presence of weak bridge defects'',
in \emph{Proc. IEEE VLSI Test Symp. (VTS)}, Napa Valley, Apr. 2003, pp.
385--392.
\bibitem{Tseng00.1}
C.-W. Tseng, E.~J. McCluskey, X.~Shao, and D.~M. Wu,
``Cold delay defect screening'',
in \emph{Proc. IEEE VLSI Test Symp. (VTS)}, Montreal, Apr. 2000, pp. 183--188.
\bibitem{Li03.1}
Z.~Li, X.~Lu, W.~Qiu, W.~Shi, and D.~M.~H. Walker,
``A circuit level fault model for resistive opens and bridges'',
in \emph{Proc. IEEE VLSI Test Symp. (VTS)}, Napa Valley, Apr. 2003, pp.
379--384.
\bibitem{Cuvi99.1}
M.~Cuviello, S.~Dey, X.~Bai, and Y.~Zhao,
``Fault modeling and simulation for crosstalk in system-on-chip
interconnects'',
in \emph{Proc. IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD)}, 1999, pp.
297--303.
\bibitem{Pram97.1}
A.~K. Pramanick and S.~M. Reddy,
``On the fault coverage of gate delay fault detecting tests'',
\emph{IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems},
vol. 16, no. 1, pp. 78--94, Jan. 1997.
\bibitem{Siva01.1}
M.~Sivaraman and A.~J. Strojwas,
``Path delay fault diagnosis and coverage---a metric and an estimation
technique'',
\emph{IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems},
vol. 20, no. 3, pp. 440--457, Mar. 2001.
\bibitem{Wang04.2}
L.-C. Wang, J.-J. Liou, and K.-T. Cheng,
``Critical path selection for delay fault testing based upon a statistical
timing model'',
\emph{IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems},
vol. 23, no. 11, pp. 1550--1565, Nov. 2004.
\bibitem{moha00.1}
M.~G. Mohammad, K.~K. Saluja, and A.~Yap,
``Testing flash memories'',
in \emph{Proc. 13th Int. Conf. VLSI Design}, Jan. 2000, pp. 406--411.
\bibitem{moha01.1}
M.~G. Mohammad and K.~K. Saluja,
``Flash memory disturbances: modeling and test'',
in \emph{Proc. IEEE VLSI Test Symp. (VTS)}, Marina Del Rey, California, Apr.
2001, pp. 218 --224.
\bibitem{cww02.1}
J.-C. Yeh, C.-F. Wu, K.-L. Cheng, Y.-F. Chou, C.-T. Huang, and C.-W. Wu,
``Flash memory built-in self-test using march-like algorithms'',
in \emph{Proc. IEEE Int. Workshop on Electronic Design, Test, and Applications
(DELTA)}, Christchurch, Jan. 2002, pp. 137--141.
\bibitem{cww02.7}
K.-L. Cheng, J.-C. Yeh, C.-W. Wang, C.-T. Huang, and C.-W. Wu,
``{RAMSES-FT}: A fault simulator for flash memory testing and diagnostics'',
in \emph{Proc. IEEE VLSI Test Symp. (VTS)}, Monterey, California, Apr. 2002,
pp. 281--286.
\bibitem{cww02.16}
S.-K. Chiu, J.-C. Yeh, C.-T. Huang, and C.-W. Wu,
``Diagonal test and diagnostic schemes for flash memories'',
in \emph{Proc. Int. Test Conf. (ITC)}, Baltmore, Oct. 2002, pp. 37--46.
\bibitem{Huff52.1}
D.~A. Huffman,
``{A method for the construction of minimum-redundancy codes}'',
\emph{Proc. IRE}, vol. 40, pp. 1098--1101, Sept. 1952.
\bibitem{cww03.11}
R.-F. Huang, L.-M. Denq, and C.-W. Wu,
``A testability-driven optimizer and wrapper generator for embedded memories'',
in \emph{Proc. IEEE Int. Workshop on Memory Technology, Design and Testing
(MTDT)}, San Jose, July 2003, pp. 53--56.
\bibitem{cww03.19}
L.-M. Denq, R.-F. Huang, C.-W. Wu, Y.-J. Chang, and W.-C. Wu,
``A parallel built-in self-diagnosis scheme for embedded memory'',
in \emph{Proc. 14th VLSI Design/CAD Symp.}, Hualien, Aug. 2003, pp. 449--452.
\bibitem{cww04.6}
L.-M. Denq, R.-F. Huang, C.-W. Wu, Y.-J. Chang, and W.-C. Wu,
``A parallel built-in diagnostic scheme for multiple embedded memories'',
in \emph{Proc. IEEE Int. Workshop on Memory Technology, Design and Testing
(MTDT)}, San Jose, Aug. 2004, pp. 65--69.
\bibitem{cww05.10}
R.-F. Huang, J.-F.-Li, J.-C. Yeh, and C.-W. Wu,
``{RAISIN}: A tool for evaluating redundancy analysis schemes in reparable
embedded memories'',
\emph{IEEE Design \& Test of Computers}, 2005 (accepted).
\bibitem{Disl95.1}
C.~Dislis, J.~H. Dick, I.~D. Dear, and A.~P. Ambler,
\emph{Test Economics and Design for Testability for Electronic Circuits and
Systems},
Ellis Horwood, Hemel Hempstead, 1995.
\bibitem{Wei97.1}
S.~Wei, P.~K. Nag, R.~D. Blanton, A.~Gattiker, and W.~Maly,
``To {DFT} or not to {DFT}?'',
in \emph{Proc. Int. Test Conf. (ITC)}, 1997.
\bibitem{cww00.3}
J.-M. Lu and C.-W. Wu,
``Cost and benefit models for logic and memory {BIST}'',
in \emph{Proc. Design, Automation and Test in Europe (DATE)}, Paris, Mar. 2000,
pp. 710--714.
\bibitem{Lee05.1}
Y.~K. Lee, B.~S. Chun, Y.~K. Kim, I.~Hwang, W.~Park, T.~Kim, H.~Kim, J.~Lee,
and W.-C. Jeong,
``Influence of freelayer in magnetic tunnel junction on switching of
submicrometer magnetoresistive random access memory arrays'',
\emph{IEEE Trans. Magnetics}, vol. 41, no. 2, pp. 883--886, Feb. 2005.
\bibitem{Segal01.1}
J.~Segal, A.~Jee, D.~Lepejian, and B.~Chu,
``Using electrical bitmap results from embedded memory to enhance yield'',
\emph{IEEE Design \& Test of Computers}, vol. 15, no. 3, pp. 28--39, May 2001.
\bibitem{cww04.5}
R.-F. Huang, C.-L. Su, C.-W. Wu, Y.-J. Chang, and W.-C. Wu,
``A memory built-in self-diagnosis design with syndrome compression'',
in \emph{Proc. IEEE Int. Workshop on Current \& Defect Based Testing (DBT)},
Napa Valley, Apr. 2004, pp. 97--102.
\bibitem{Kebi92.1}
O.~Kebichi and M.~Nicolaidis,
``A tool for automatic generation of {BISTed} and transparent {BISTed RAMs}'',
in \emph{Proc. IEEE Int. Conf. Computer Design (ICCD)}, Oct. 1992, pp.
570--575.
\bibitem{cww01.16}
K.-L. Cheng, C.-M. Hsueh, J.-R. Huang, J.-C. Yeh, C.-T. Huang, and C.-W. Wu,
``Automatic generation of memory built-in self-test cores for system-on-chip'',
in \emph{Proc. Tenth IEEE Asian Test Symp. (ATS)}, Kyoto, Nov. 2001, pp.
91--96.
\bibitem{cww99.18}
C.-F. Wu, C.-T. Huang, and C.-W. Wu,
``{RAMSES}: a fast memory fault simulator'',
in \emph{Proc. IEEE Int. Symp. Defect and Fault Tolerance in VLSI Systems
(DFT)}, Albuquerque, Nov. 1999, pp. 165--173.
\bibitem{Shou01.1}
S.~Shoukourian, V.~Vardanian, and Y.~Zorian,
``An approach for evaluation of redundancy analysis algorithm'',
in \emph{Proc. IEEE Int. Workshop on Memory Technology, Design and Testing
(MTDT)}, San Jose, Aug. 2001, pp. 51--55.
\bibitem{Berg00.1}
T.~J. Bergfeld, D.~Niggemeyer, and E.~M. Rudnick,
``Diagnostic testing of embedded memories using {BIST}'',
in \emph{Proc. Design, Automation and Test in Europe (DATE)}, Paris, Mar. 2000,
pp. 305--309.
\bibitem{Powe03.1}
T.~J. Powell, W.-T. Cheng, J.~Rayhawk, O.~Samman, P.~Policke, and S.~Lai,
``{BIST} for deep submicron {ASIC} memories with high performance
application'',
in \emph{Proc. Int. Test Conf. (ITC)}, Charlotte, Sept. 2003, pp. 386--392.
\bibitem{Bush00.1}
M.~L. Bushnell and V.~D. Agrawal,
\emph{Essentials of Electronic Testing for Digital, Memory and Mixed-Signal
VLSI Circuits},
Kluwer Academic Publishers, Norwell, Massachusetts, 2000.
\bibitem{Aitk04.1}
R.~C. Aitken,
``A modular wrapper enabling high speed {BIST} and repair for small wide
memories'',
in \emph{Proc. Int. Test Conf. (ITC)}, Charlotte, Oct. 2004, pp. 997--1005.
\bibitem{Stap95.1}
C.~H. Stapper and R.~J. Rosner,
``Integrated circuit yield management and yield analysis: development and
implementation'',
\emph{IEEE Trans. Semiconductor Manufacturing}, vol. 8, no. 2, pp. 95--102, May
1995.
\bibitem{Zori02.2}
Y.~Zorian,
``Embedded infrastructure {IP} for {SOC} yield improvement'',
in \emph{Proc. IEEE/ACM Design Automation Conf. (DAC)}, New Orleans, June 2002,
pp. 709--712.
\bibitem{Goor01.3}
M.~Klaus and A.~J. van~de Goor,
``Tests for resistive and capacitive defects in address decoders'',
in \emph{Proc. Tenth IEEE Asian Test Symp. (ATS)}, Kyoto, Nov. 2001, pp.
31--36.
\bibitem{Pilo01.1}
H.~Pilo, R.~D. Adams, R.~E. Busch, E.~A. Nelson, and G.~E. Rudgers,
``Bitline contacts in high density {SRAM}s: Design for testability and
stressability'',
in \emph{Proc. Int. Test Conf. (ITC)}, Baltmore, Oct. 2001, pp. 776--782.
\bibitem{Itoh01.1}
K.~Itoh,
\emph{{VLSI} Memory Chip Design},
Springer-Verlag, New York, 2001.
\bibitem{Sarp91.1}
R.~Sarpeshkar, J.~L.~Wyatt Jr., N.~C. Lu, and P.~D. Gerber,
``Mismatch sensitivity of a simultaneously latched {CMOS} sense amplifier'',
\emph{IEEE Journal of Solid-State Circuits}, vol. 26, no. 10, pp. 1413--1422,
Oct. 1991.
\bibitem{Rede02.1}
M.~Redeker, B.~F. Cockburn, and D.~G. Elliott,
``An investigation into crosstalk noise in {DRAM} structures'',
in \emph{Proc. IEEE Int. Workshop on Memory Technology, Design and Testing
(MTDT)}, Isle of Bendor, France, July 2002, pp. 123--129.
\bibitem{Goor02.1}
A.~J. van~de Goor and I.~Schanstra,
``Address and data scrambling: causes and impact on mwmory tests'',
in \emph{Proc. IEEE Int. Workshop on Electronic Design, Test, and Applications
(DELTA)}, Christchurch, Jan. 2002, pp. 128--136.
\bibitem{cww05.8}
J.-F. Li, J.-C. Yeh, R.-F. Huang, and C.-W. Wu,
``A built-in self-repair design for {RAMs} with {2-D} redundancy'',
\emph{IEEE Trans. VLSI Systems}, Jan. 2005 (accepted).