簡易檢索 / 詳目顯示

研究生: 張立亭
Chang, Li-Ting
論文名稱: 濕度對尼龍6 /多壁奈米碳管導電複合材料之影響與應用
Humidity Effect on the Electrical Conductivity of Multi-walled Carbon Nanotubes/ Nylon6 Composites and Application
指導教授: 徐文光
Hsu, Wen-Kuang
口試委員: 林語堂
LIN, YU-TANG
白鴻瑜
BAI, HONG-YU
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 70
中文關鍵詞: 奈米碳管尼龍6濕度電解質吸附
外文關鍵詞: Nylon6
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究進行濕度對多壁奈米碳管/尼龍6複合材料導電性之影響。本實驗利用兩種方法雙螺桿擠壓射出及粉末研磨熱壓之製程製備多壁奈米碳管/尼龍6複合材料,並分析其電性與機械性質。研究發現當碳管濃度低於滲透臨界值(percolation threshold)時,濕度的上升會導致電阻值上升,並且可透過溫度的提升使電阻率之變化加大,此機制是由於奈米碳管之間距因高分子吸濕膨脹導致電子躍遷距離增加。此外,以NaCl水溶液取代純水進行吸附實驗時,由於離子水合物之產生而使膨脹效應更為劇烈,導致複合材料之電阻率隨電解質濃度增加而上升。試片若吸附Fe2 (SO4)3或Ca(OH)2電解液,複合材料之電阻率反而下降,原因來自吸附在碳管表面之陽離子(Fe3+ or Ca2+)提供管與管之間躍遷的捷徑,因此所需之躍遷能量或躍遷能障(hopping energy or barrier)降低。研究顯示,奈米碳管/尼龍6複合材料對水氣與電解質皆具有感測性,可作為嬰兒流汗、園藝溫室房、軍用飛機帳棚及穿戴式濕度感測元件。


    The relationship between conductivity of multi-walled carbon nanotubes (MWCNT)/Nylon 6 composites and humidity is studied. The MWCNT/Nylon6 composites are fabricated through two methods: (1) co-rotating twin-screw extruder and (2) powder hot-compression. The mechanical and electrical properties are also analyzed. It is found below electrical percolation threshold that film resistivity increases with humid-ity rising; increment becomes more profound at elevated temperature. Swelling of polymer layers due to water intercalation expands tube-tube spacing and accounts for increased resistivity. Inter-tube separation be-comes significant as water adsorbates are replaced by hydrates, i.e. Na+(H-2O)n and Cl-(H2O)n in NaCl aqueous solution. In contrast, the adsorption of Fe2(SO4)3 leads to decrease in the resistivity of composites. The phe-nomenon is due to the reduction of hopping energy between CNTs.

    目錄 摘要 ii Abstract iii 致謝 iv 目錄 v 圖目錄 ix 表目錄 xii 第1章 前言與實驗動機 1 第2章 基礎理論與文獻回顧 2 2.1. 奈米碳管性質 2 2.1.1. 奈米碳管結構 2 2.1.2. 奈米碳管的機械性質 5 2.1.3. 奈米碳管熱傳導 6 2.1.4. 奈米碳管導電性 8 2.1.5. 奈米碳管製備 9 2.1.5.1. 化學氣相沈積法(Chemical Vapor Deposition) 9 2.1.5.2. 電弧放電法(Arc Discharge) 10 2.1.5.3. 雷射蒸發法(Laser ablation) 11 2.2. 高分子與尼龍6 12 2.2.1. 高分子 12 2.2.2. 尼龍6 14 2.3. 奈米碳管-高分子複合材料 16 2.3.1. 奈米碳管-高分子複合材料簡介 16 2.3.2. 奈米碳管-高分子複合材料機械性質 16 2.3.3. 奈米碳管-高分子複合材料導電性 18 2.4. 濕度感測 20 2.4.1. 濕度感測簡介及原理 20 2.4.2. 奈米碳管於濕度感測之應用 21 2.4.3. 奈米碳管-高分子於濕度感測之應用 21 第3章 研究方法 23 3.1. 實驗器材 23 3.1.1. 藥品與耗材 23 3.1.2. 儀器與設備 24 3.2. 實驗規劃 25 3.3. 實驗步驟 26 3.3.1. 奈米碳管/尼龍6復合材料製備 26 3.3.1.1. 雙螺桿射出成型 26 3.3.1.2. 研磨混合熱壓 26 3.4. 量測與分析 30 3.4.1. 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM) 30 3.4.2. 示差掃瞄熱卡量計(Differential Scanning Calorimeter, DSC) 30 3.4.3. 萬能試驗機 (Universal Testing Machine, UTM) 31 3.4.4. 熱傳導係數量測 32 3.4.5. 電性量測 32 第4章 實驗結果與討論 35 4.1. 材料分析 35 4.1.1. 微結構結構分析 35 4.1.2. 奈米碳管/尼龍6複合材的示差掃描熱卡性質 39 4.1.3. 奈米碳管/尼龍6複合材的機械性質 41 4.1.4. 奈米碳管/尼龍6複合材的熱傳導性 42 4.1.5. 奈米碳管/尼龍6複合材的電性量測 43 4.1.5.1. 碳管濃度對電性之影響 43 4.1.5.2. 溫度對電性之影響 44 4.2. 吸濕試驗 45 4.2.1. 濕度對奈米碳管/尼龍6複合材料電性之影響 45 4.2.2. 電解質吸附對奈米碳管/尼龍6複合材料電性影響 48 4.2.2.1. 氯化鈉水溶液 48 4.2.2.2. 硫酸鐵水溶液 52 4.2.2.3. 氫氧化鈣水溶液 56 4.2.3. 導電擴散測試 57 第5章 結論 59 參考文獻 60

    [1] Iijima, S., Helical Microtubules of Graphitic Carbon. Nature, 1991.354(6348): p. 56-58.
    [2] Berber, S., Y.K. Kwon, and D. Tomanek, Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters, 2000. 84(20): P. 4613-4616.
    [3] Thostenson, E.T., Z.F. Ren, and T.W. Chou, Advances in the science and tech-nology of carbon nanotubes and their composites: a review. Composites Science and Technology. 2001. 61(13): p. 1899-1912.
    [4] Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C., Science of Fullerenes and Carbon Nanotubes, 1996.
    [5] 馬振基, 高分子複合材料, 國立編譯館, 1999, p.235-244
    [6] T. W. Odom, J L. Huang, P. Kim, C. M. Leiber, “Structure and Electronic Prop-erties of Carbon Nanotubes”, Journal of Physical Chemistry B 104, 2794, 2000
    [7] Hassanien A., et al., Geometrical structure and electronic properties of atomical-ly resolved multiwall carbon nanotubes. Applied Physics Letters, 1999.75(18): p.2755-2757.
    [8] 陳會明,納米碳管製備,結構,物性及應用, 化學工業出版社,北京, 2002
    [9] M. J Treacy, T.W.Ebbesen, J.M. Gibson, “Exceptionally high Young’s modulus observed for individual CNT”, Nature 381, 20, 1996
    [10] Ebbesen, T. W. & Ajatan, P.M., Large-scale synthesis of carbon nanotubes, Na-ture 358, 1992; p.220-222.
    [11] 馬振基, 奈米材料原理與應用, 全華科技圖書公司, 2003
    [12] J. Hone, M. Whitney, C. Piskoti, and A. Zettl , Thermal conductivity of sin-gle-walled carbon nanotubes, Physical Review B, 1999, 59, p. R2514.
    [13] W. Yi, L. Lu, Zhang Dian-lin, Z. W. Pan, and S. S. Xie, Linear specific heat of carbon nanotubes, Physical Review B, 1999, 59, p. R9015 .
    [14] Lambin P., Electronic structure of carbon nanotubes. Comptes Rendus Physique, 2003.4(9): p. 1009-1019.
    [15] W. Dacheng, Y. Liu, The Intromolecular Junctions of Carbon Nanotubes, Adv. Mater., 9999, 2008; p.1-27.
    [16] M. S. Mohlala, X.Y. Liu, J. M. Robinson, and N. J. Coville, Organometallics 2005, 24, 972-976.
    [17] Y. Saito, K. Nishikubo, K. Kawabata, and T. Matsumoto, Journal of Applied Physics 80, 3062 (1996).
    [18] T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, R. E. Smalley, J. Phys. Chem., 1995, 99, 27, 10694–10697.
    [19] RecyclePlastic.Com, http://www.recycledplastic.com/index.html%3Fp=10288.html
    [20] Ozseals, http://www.ozseals.com/thermoplastic-vs-thermoset-whats-the-difference/
    [21] 曾嘉雄, 沈育如, 蔡平賜, 高溫尼龍研究進展, 化工, 第64卷第2期, 2017
    [22] Yanan Ma, Tao Zhou, Gehong Su, Yan Li and Aiming Zhang, RSC Adv., 2016, 6, 87405–87415
    [23] B Ellis, R Smith, Polymers: A Property Database, Second Edition, 2008
    [24] Sorba, E. and De Chirico, A., Polymer, 1976, 17, 348, (Tg)
    [25] BIP, Nylon 6, technical data booklet, Beetle, 1984, (technical datasheet)
    [26] Ultramid S Polyamides, BASF, 1996, (technical datasheet)
    [27] Organamide Nylon 6. General information and properties, Elf Atochem., 1984, (technical datasheet)
    [28] K.T. Lau, C. Gu, D. Hui, Compos. Part. B, 2005, 37, 425-436
    [29] J. N. Coleman, W. J. Blau, A. B. Dalton, E. Munoz, S. Collins, B. G. Kim, J. Razal, M. Selvidge, G. Vieiro, and R. H. Baughman, Appl. Phys. Lett., 2003, 82, 1682-1684
    [30] A. Allaoui, S. Bai, H. M. Cheng and J. B. Bai, Compos. Sci. Technol, 2002, 62, 1993-1998
    [31] C. Wei, Appl. Phys. Lett.,2006, 88, 93-108
    [32] P.M. Ajayan, L.S, Schadler, C. Giannarism A.Rubio, Adv. Mater, 2000, 10, 750-753
    [33] M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature, 1996, 381, 678-680
    [34] H. Ye, H. Lam, N.Tithchenal, Y.Gogotsi, F.Ko, Appl. Phys. Lett, 2004, 85, 1775
    [35] L.S. Schadler, S.C. Giannaris, P. M. Ajayan, Appl. Phys. Lett., 1998, 73, 3942
    [36] J. Fournier, G. Boiteux, G.Seytre, G. Marichy, Synth. Met. 1997, 84, 893
    [37] J.N. Coleman, S.Curran, A.B. Dalton, A. P. Daveyy, B. McCarthy, W. Blau, R. C. Barklie, Phys. Rew. B. 1998, 58, R7492
    [38] S.P. li, Y. J. Qin, J. H. Shi, Z. X. Guo, Y.F. Li, D.B. Xhu, Chem. Mater, 2004, 17, 130.
    [39] U.D. Wegliowsla, M. Kaempgenm B. Hornbostel, V. Skakalova, J.P. Wang, J. D. Liang, S. Roth, phys. Stat. Sol, 2006, 12, 3440
    [40] J. T. WeScott, P. Kung, A. Maiti, App. Phys. Lett.,2007, 90, 0033116
    [41] E. Kymakis, G.A. J. Amaratunga, J. Aappl. Phys., 2006, 99, 084302
    [42] B. E. Kilbride, J. N, Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Druey, S. Hutzler, S. Roth, W.J. Blau, J. Appl. Phys., 2002, 92, 4024
    [43] B. R. Sankapal, K. Setyowati, J.Chen, Appl. Phys. Lett., 2007, 91, 173103
    [44] H. Farahani , R. Wagiran, and M. N. Hamidon, Sensors, 2014, 14, 7881-7939
    [45] 感測器原理與量測, http://www.hvac-net.org.tw/CKEdit/upload/files/感測器_濕度計.pdf
    [46] O.K. Varghese, P.D. Kichambre, D. Gong, K. G. Ong, E.C. Dickey, C. A. Grimes, Sens. Actuators B, 2001, 81, 1, 32-41
    [47] J. Li, Y. J. Lu, Q. Ye, M. Chinke, J. Han, M. Meyyappan, Nano Lett., 2003, 3, 7, 929-933
    [48] A. Zahab, L. Spina, P. Poncharal, C. Marliere, Phys. Rev. B, 2000, 62, 15, 10000–10003.
    [49] L. T. Liu, X. Y. Ye, K. Wu, Z. Y. Zhou, D.J. Lee, T.H. Cui, IEEE Sens. J., 2009, 9, 10, 1308-1314
    [50] Q. Y. Tang, Y.C. Chan, K. Zhang, Sens. Actuators B, 2001, 152, 99-106
    [51] M.J. Yang, G. Casalbore-Miceli, N. Camaioni, C.M. Mari, H. Sun, Y. Li, M. Ling, J. Appl. Electrochem. 2000, 30, 753–756.
    [52] M.J. Yang, H.M. Sun, G. Casalbore-Miceli, N. Camaioni, C.M. Mari, Synth. Met., 1996, 81, 65–69
    [53] Y. Sakai, M. Matsuguchi, N. Yonesato, Electrochim. Acta., 2001, 46, 1509–1514.
    [54] Pi-Guey Su, Chao-Shen Wang, Sens. Actuators B., 2007, 124, 303–308.
    [55] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Sci-ence, 2000, 287, 622–625.
    [56] S.J. Tans, R.M. Verschuren, C. Dekker, Nature, 1998, 393, 49–52.
    [57] Q.H. Yang, P.X. Hou, S. Bai, M.Z. Wang, H.M. Cheng, , Chem. Phys. Lett., 2001, 345, 18–24.
    [58] 聚合物合成與鑑定 王宗櫚/謝達華/何國賢 編著

    [59] Lecture note of NTU “固態化學”, (2000)
    [60] L. Li, B. Li, M. A. Hood, C. Y. Li, Polymer, 2009, 50, 953–965
    [61] A. J. Hassani1, Z. A. Mohd Ishak, A. R. Mohamed, eXPRESS Polymer Letters, 2014, 8, 3, 177–186.
    [62] M. Aggarwal, S. Khan, M. Husain, T. C. Ming, M. Y. Tsai, T. P. Perng, Z. H. Khan, Eur. Phys. J. B, 2007, 60.
    [63] B. Ashrafi, D. Marchand, Y. Martinez-Rubi, M.B. Jakubinek, B. Simard, A. Johnston, The 19th international conference on composite materials.
    [64] K. P. Yooa, L. T. Lima, N.K. Mina, M. J. Leeb, C. J. Leec, C. W. Park, Sens. Actuators B, 2010, 145, 120-125
    [65] J. Peng, D. Cao, Z. He, J. Guo, P. Hapala, R. Ma, B. Cheng, J. Chen, W. J. Xie, X. Z. Li, P. Jelínek, L. M. Xu, Y. Q. Gao, E. G. Wang, Y. Jiang, Letter, 2018
    [66] H. C. Li, S.Y. Lu, S. H. Syue, W. K. Hsu, S. C. Chang, APPLIED PHYSICS LETTERS, 2008, 93, 033104
    [67] B. Q. Wei, R. Spolenak, P. K. Redlich, M. RÜhle, E. Arzt, Appl. Phys. Lett., 1999 74, 3149

    QR CODE