研究生: |
楊之光 Yang, Chih Kuang |
---|---|
論文名稱: |
先進狹縫式塗佈研究 Advanced Solt Coating Research |
指導教授: |
汪上曉
Wang, David Shan Hill 劉大佼 Liu, Ta Jo |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 117頁 |
中文關鍵詞: | 塗佈視窗 、塗佈液珠 、黏彈性效應 、方塊形塗佈 、塗佈缺陷 、方塊形塗佈機 |
外文關鍵詞: | coating window, coating bead, viscoelastic effect, patch coating, coating defect, patch coater |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
精密塗佈技術是未來薄膜技術的重要發展方向,在諸多的塗佈技術中,狹縫式塗佈是用途廣泛且有深厚發展潛力的一項,前人的研究闡明了許多狹縫式塗佈的疑難問題,然而,隨著精密塗佈技術的發展,高分子添加劑與非連續操作逐漸地應用於狹縫式塗佈之中,這兩個研究課題目前並未發展出適當的理論來說明其機制,本研究以理論與實驗的方法對這兩個課題進行研究。
本研究以使用二階流體模型微擾法分析些微黏彈性效應對於塗佈視窗的改變,發現第一正向力的作用會影響流場壓力,在某些流場條件下可減緩塗佈缺陷的產生,但在其他的流場條件下則反而加快塗佈缺陷的產生;我們使用顯微攝影技術拍攝塗佈液珠的外形,藉由分析上、下游彎月面的曲率變化證明本研究理論模型的預測。
成膜過程是非連續性塗佈研究的關鍵課題,本研究分析邊界層的暫態過程,發現此種暫態過程的反應時間非常的短,根據這個結果,推論出成膜過程時,塗佈條件位於塗佈視窗之外才是缺陷的生成原因,從而建立非連續性操作與連續式塗佈的關係,根據這些關係推論出許多實用的操作指引。
除了學理的探討,本研究結合塗佈理論、機械設計與機電整合的知識,自行設計與組裝一台精密方塊形塗佈機並測試成功,本研究除了理論的探討與建立新的實驗工具之外,最特出的就是第一個成功的將塗佈理論應用於塗佈機設計,提升我國先進塗佈技術水準於世界頂尖的地位。
Precision coating is a very important process in manufacturing of thin films. Among many coating techniques, slot coating may be the most promising in developing high precision coating process due to its versatility and controllability. Fundamentals of slot coating have been studied by many pioneer researchers. However, two topics: use of polymer additives and discrete operation remained relatively largely uninvestigated, especially in terms of their basic mechanisms. These two topics are studied in this thesis using theoretical analysis and experimental methods.
The second order fluid perturbation model is used to analyze viscoelastic effects on coating limits. It is found that the first normal stress can induce or avoid coating defects under different conditions. The predictions of this model are supported by analyzing the curvatures of upstream /or downstream menisci using microphotography.
Transient flow effects due to the formation and growth of boundary layers are analyzed; and it is found the response time is extremely short. Therefore the main reason of the front edge coating defects is that the coating conditions are out of the coating window when the coating flow builds up. The relations between discontinuous and continuous coating are established and many practical operation guidelines are developed and confirmed by experiments.
A practical instrument design of patch coater was also performed in this research. By integrating knowledge in coating engineering, mechanical engineering, and electrical engineering, a precision patch coater is designed, set up and tested. Besides new theories and experimental tools, the most special achievement in our research is the patch coater. This research is the first mechanical design that applies coating engineering to patch coating. Our achievements push the coating technology of Taiwan on the top of the world.
1. Bagen, S., Melgaard, H., Minnich, C., Newquist, C., and Gibson, G. (1996). Novel low cost process technologies for application and curing of polyimide films. Int. J. of Microcircuits & Electronic Packaging, 19, 418-426.
2. Bird, R.B., Armstrong, R.C., & Hassager, O. (1987). Dynamics polymeric liquids. New York: John Wiley & Sons, inc.
3. Bird, R.B., Stewart, W.E., & Lightfoot, E.N. (1960). Transport Phenomena. New York: John Wiley & Sons, inc.
4. Blake, T.D., Clarke, A., & Ruschak, K.J. (1994). Hydrodynamics assist of dynamic wetting. AICHE J., 40, 229-242.
5. Choinski, E.J. (1990). Method and apparatus for patch-coating printed circuit boards. U.S. Patent No. 4,938,994.
6. Cohen, E., & Gutoff, E. (1992). Modern coating and drying technology. New York: VCH Publishers.
7. Fraysse, N., & Homsy, G. M. (1994). An experimental study of rivulet instabilities in centrifugal spin coating of viscous newtonian and non-newtonian fluid. Physics of Fluids, 6, 1491-1504.
8. Gutoff, E.B., & Kendrick, C.E. (1987). Low flow limits of coatability on a slide coater. AICHE J., 33, 141-145.
9. Haaland, P., MacKibben, J., & Parodi, M. (1995). The art and science of thin film coating: a progress report. Solid State Technology, 38, 83-85.
10. Higgins, B.G., & Brown, R.A. (1984). Multiple equilibrium shapes of partially constrained menisci: a quasi-static mechanism for instability of a coating bead. Chemical Engineering Science, 39, 1339-1345.
11. Higgins, B.G., & Scriven, L.E. (1980). Capillary pressure and viscous pressure drop set bounds on coating bead operability. Chemical Engineering Science, 35, 673-682.
12. Kistler, S.F., & Schweizer, P.M. (1997). Liquid film coating. London: Chapman & Hall.
13. Kistler, S.F., & Scriven, L.E. (1994). The teapot effect: sheet-forming flows with deflection, wetting and hysteresis. Journal of fluid mechanics, 263, 19-62.
14. Landau, L., & Levich, B. (1942). Dragging of a liquid by a moving plate. Acta Physicochim. URSS, 17, 42-54.
15. Lee, K.Y., Liu, L.D., & Liu, T.J. (1992). Minimum wet thickness in extrusion slot coating. Chemical Engineering Science, 47, 1703-1713.
16. Milbourn, T.M., & Barth, J.J. (1994). Method of applying discrete coating patches on a moving web. U.S. Patent No. 5,360,629.
17. Montgomery, D.C. (1996). Design and analysis of experiments. New York: John Wiley & Sons.
18. Nagai, H., & Scriven, L.E. (2000). Start-up of Slot coating. 10th International Coating Science and Technology Symposium.
19. Ning, C.Y., Tsai, C.C., & Liu, T.J. (1996). The effect of polymer additives on extrusion slot coating. Chemical Engineering Science, 51, 3289-3297.
20. Ruschak, K.J. (1976). Limited flow in a pre-metered coating device. Chemical Engineering Science, 31, 1057-1060.
21. Ruschak, K.J. (1985). Coating flow. Ann. Rev. Fluid Mech., 17, 65-89.
22. Sandock, L.R. (1996). Coating process and apparatus. U.S. Patent No. 5,516,545.
23. Shikhmurzaev, Y.D. (2000). Discrete coating: how does it start? 10th International Coating Science and Technology Symposium.
24. Snodgrass, O.T., Farney, M.K., & Gibson, G.M. (1992). Filtering and dispensing system with independently activated pumps in series. U.S. Patent No. 5,167,837.
25. Stroszynski, J. (1977). Apparatus for the manufacture of a series of photoconductor webs. U.S. Patent No. 4,050,410.
26. Sullivan, T.M., & Middleman, S. (1986). Film thickness in blade coating of viscous and viscoelastic liquids. J. Non-Newtonian Fluid Mech., 21, 13-38.
27. Wells, G.T., Gibson, G., & Newquist, C. (1998). Large area processing (LAP): performance studies on extrusion coating. International Journal of Microcircuits and Electronic Packaging, 21, 28-33.
28. Takkenjo, 曹昭陽譯, (1999) “電動馬達與控制”, 台北:五南出版社。
29. 李國陽, (1990) “擠壓式塗佈工程之研究”, 國立清華大學化學工程研究所博士論文。
30. 林庭瑜, (1999) “高黏度塗佈液塗佈視窗之測定與分析”, 國立清華大學化學工程研究所碩士論文。
31. 高明清, (1997) “高分子添加劑對雙層共擠壓式塗佈的影響”, 國立清華大學化學工程研究所碩士論文。
32. 甯正宇, (1995) “高分子添加劑對擠壓式塗佈流動之影響”, 國立清華大學化學工程研究所碩士論文。
33. 劉大佼, (1997) “高分子加工原理與應用”, 台北:揚智出版社。
34. 劉俊昌, (2000) “高分子添加劑對擠壓式塗佈缺陷之影響”, 國立清華大學化學工程研究所碩士論文。
35. 蔡境哲, (1998) “低黏度牛頓流體與含高分子添加劑水溶液之預調式塗佈分析”, 國立清華大學化學工程研究所碩士論文。
36. 鐘玉堆, (1993) “電機學”, 台北:高立圖書公司。
37. 蕭子健, 儲昭偉, 與 王智昱, “Labview 基礎篇” 台北:高立圖書公司。
38. 蕭子健, 儲昭偉, 與 王智昱, “Labview 進階篇” 台北:高立圖書公司。