研究生: |
張博淳 Chang, Po-Chun |
---|---|
論文名稱: |
胃幽門螺旋桿菌26695菌株之ADP-L-glycero-D-manno-heptose-6-epimerase由HP0859基因所表現之特性研究 Studies on Helicobacter Pylori 26695 ADP-L-glycero-D-manno-heptose-6-epimerase encoded by HP0859 |
指導教授: |
高茂傑
Kao, Mou-Chieh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 57 |
中文關鍵詞: | 胃幽門螺旋桿菌 、脂多醣體 |
外文關鍵詞: | Helicobacter pylori, Lipopolysaccharide |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Helicobacter pylori is a spiral-shaped gram-negative bacteria and is recognized as a human pathogen that infects 50% human population worldwide. Several human stomach diseases, such as gastric ulcer, gastroduodenal ulcer, gastric adenocarcinoma and mucosa-associated lymphatic tissue (MALT) lymphoma, appeared to be related with H. pylori infection and colonization. The lipopolysaccharide (LPS) of H. pylori is thought to be one of the most important factors in pathogenesis. This structure enables H. pylori to escape from host immune response. LPS is present in the outer membrane and composed of O-chain, core oligosaccharide and lipid A. This study focused on the HP0859 gene. According to the bioinformatic data, the HP0859 product is predicted to catalyze the interconversion of ADP-D-glycero-D-mannoheptose and ADP-L-glycero-D-mannoheptose. ADP-L-glycero-D- mannoheptose is the major component of inner core LPS. The conserved domains of HP0859 protein also suggested that this enzyme is a NAD(P) + or FAD binding protein. To further characterize the properties of this protein, we cloned HP0859 gene and overexpressed its product. The molecular weight of recombinant HP0859 protein is 39.6 kDa and the native molecular weight is 257.7 kDa, indicated that HP0859 protein is a hexamer. The cofactor of HP0859 protein is NADP+. We also constructed the HP0859 knockout mutant. The LPS produced by knockout mutant showed a truncated LPS structure. The knockout mutant also exhibited reduced growth rate, ineffective adhesion, weak motility and more susceptible to detergent and antibiotic.
1. Kidd, M. and I.M. Modlin, A century of Helicobacter pylori: paradigms lost-paradigms regained. Digestion, 1998. 59(1): p. 1-15.
2. Konturek, J.W., Discovery by Jaworski of Helicobacter pylori and its pathogenetic role in peptic ulcer, gastritis and gastric cancer. J Physiol Pharmacol, 2003. 54 Suppl 3: p. 23-41.
3. Marshall, B.J. and J.R. Warren, Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet, 1984. 1(8390): p. 1311-5.
4. Goodwin, C.S., et al., Unusual cellular fatty acids and distinctive ultrastructure in a new spiral bacterium (Campylobacter pyloridis) from the human gastric mucosa. J Med Microbiol, 1985. 19(2): p. 257-67.
5. Goodwin, C.S., et al., Cellular fatty acid composition of Campylobacter pylori from primates and ferrets compared with those of other campylobacters. J Clin Microbiol, 1989. 27(5): p. 938-43.
6. Nomura, A., et al., Helicobacter pylori infection and the risk for duodenal and gastric ulceration. Ann Intern Med, 1994. 120(12): p. 977-81.
7. Eaton, K.A. and S. Krakowka, Effect of gastric pH on urease-dependent colonization of gnotobiotic piglets by Helicobacter pylori. Infect Immun, 1994. 62(9): p. 3604-7.
8. Graham, D.Y., et al., Effect of triple therapy (antibiotics plus bismuth) on duodenal ulcer healing. A randomized controlled trial. Ann Intern Med, 1991. 115(4): p. 266-9.
9. Cover, T.L. and M.J. Blaser, Helicobacter pylori infection, a paradigm for chronic mucosal inflammation: pathogenesis and implications for eradication and prevention. Adv Intern Med, 1996. 41: p. 85-117.
10. Tomb, J.F., et al., The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature, 1997. 388(6642): p. 539-47.
11. Alm, R.A., et al., Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature, 1999. 397(6715): p. 176-80.
12. Oh, J.D., et al., The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression. Proc Natl Acad Sci U S A, 2006. 103(26): p. 9999-10004.
13. Eaton, K.A., et al., Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect Immun, 1991. 59(7): p. 2470-5.
14. Clyne, M., A. Labigne, and B. Drumm, Helicobacter pylori requires an acidic environment to survive in the presence of urea. Infect Immun, 1995. 63(5): p. 1669-73.
15. Akada, J.K., et al., Identification of the urease operon in Helicobacter pylori and its control by mRNA decay in response to pH. Mol Microbiol, 2000. 36(5): p. 1071-84.
16. Ha, N.C., et al., Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nat Struct Biol, 2001. 8(6): p. 505-9.
17. Park, I.S. and R.P. Hausinger, Evidence for the presence of urease apoprotein complexes containing UreD, UreF, and UreG in cells that are competent for in vivo enzyme activation. J Bacteriol, 1995. 177(8): p. 1947-51.
18. Karita, M., M. Tsuda, and T. Nakazawa, Essential role of urease in vitro and in vivo Helicobacter pylori colonization study using a wild-type and isogenic urease mutant strain. J Clin Gastroenterol, 1995. 21 Suppl 1: p. S160-3.
19. Weeks, D.L., et al., A H+-gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science, 2000. 287(5452): p. 482-5.
20. Kersulyte, D., et al., Cluster of type IV secretion genes in Helicobacter pylori's plasticity zone. J Bacteriol, 2003. 185(13): p. 3764-72.
21. Hofreuter, D. and R. Haas, Characterization of two cryptic Helicobacter pylori plasmids: a putative source for horizontal gene transfer and gene shuffling. J Bacteriol, 2002. 184(10): p. 2755-66.
22. Odenbreit, S., et al., Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science, 2000. 287(5457): p. 1497-500.
23. Stein, M., R. Rappuoli, and A. Covacci, Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl Acad Sci U S A, 2000. 97(3): p. 1263-8.
24. Segal, E.D., S. Falkow, and L.S. Tompkins, Helicobacter pylori attachment to gastric cells induces cytoskeletal rearrangements and tyrosine phosphorylation of host cell proteins. Proc Natl Acad Sci U S A, 1996. 93(3): p. 1259-64.
25. Sharma, S.A., et al., Activation of IL-8 gene expression by Helicobacter pylori is regulated by transcription factor nuclear factor-kappa B in gastric epithelial cells. J Immunol, 1998. 160(5): p. 2401-7.
26. Higashi, H., et al., SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science, 2002. 295(5555): p. 683-6.
27. Churin, Y., et al., Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J Cell Biol, 2003. 161(2): p. 249-55.
28. Selbach, M., et al., The Helicobacter pylori CagA protein induces cortactin dephosphorylation and actin rearrangement by c-Src inactivation. EMBO J, 2003. 22(3): p. 515-28.
29. Segal, E.D., et al., Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc Natl Acad Sci U S A, 1999. 96(25): p. 14559-64.
30. Schreiber, S., et al., The spatial orientation of Helicobacter pylori in the gastric mucus. Proc Natl Acad Sci U S A, 2004. 101(14): p. 5024-9.
31. Leying, H., et al., Cloning and genetic characterization of a Helicobacter pylori flagellin gene. Mol Microbiol, 1992. 6(19): p. 2863-74.
32. Eaton, K.A., et al., Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect Immun, 1996. 64(7): p. 2445-8.
33. Boren, T., et al., Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science, 1993. 262(5141): p. 1892-5.
34. Mahdavi, J., et al., Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science, 2002. 297(5581): p. 573-8.
35. Yamaoka, Y., D.H. Kwon, and D.Y. Graham, A M(r) 34,000 proinflammatory outer membrane protein (oipA) of Helicobacter pylori. Proc Natl Acad Sci U S A, 2000. 97(13): p. 7533-8.
36. Cover, T.L., et al., Divergence of genetic sequences for the vacuolating cytotoxin among Helicobacter pylori strains. J Biol Chem, 1994. 269(14): p. 10566-73.
37. Phadnis, S.H., et al., Pathological significance and molecular characterization of the vacuolating toxin gene of Helicobacter pylori. Infect Immun, 1994. 62(5): p. 1557-65.
38. Schmitt, W. and R. Haas, Genetic analysis of the Helicobacter pylori vacuolating cytotoxin: structural similarities with the IgA protease type of exported protein. Mol Microbiol, 1994. 12(2): p. 307-19.
39. de Bernard, M., et al., Low pH activates the vacuolating toxin of Helicobacter pylori, which becomes acid and pepsin resistant. J Biol Chem, 1995. 270(41): p. 23937-40.
40. Yahiro, K., et al., Activation of Helicobacter pylori VacA toxin by alkaline or acid conditions increases its binding to a 250-kDa receptor protein-tyrosine phosphatase beta. J Biol Chem, 1999. 274(51): p. 36693-9.
41. McClain, M.S., et al., Acid activation of Helicobacter pylori vacuolating cytotoxin (VacA) results in toxin internalization by eukaryotic cells. Mol Microbiol, 2000. 37(2): p. 433-42.
42. Czajkowsky, D.M., et al., The vacuolating toxin from Helicobacter pylori forms hexameric pores in lipid bilayers at low pH. Proc Natl Acad Sci U S A, 1999. 96(5): p. 2001-6.
43. Szabo, I., et al., Formation of anion-selective channels in the cell plasma membrane by the toxin VacA of Helicobacter pylori is required for its biological activity. EMBO J, 1999. 18(20): p. 5517-27.
44. Moran, A.P., Lipopolysaccharide in bacterial chronic infection: insights from Helicobacter pylori lipopolysaccharide and lipid A. Int J Med Microbiol, 2007. 297(5): p. 307-19.
45. Raetz, C.R., Biochemistry of endotoxins. Annu Rev Biochem, 1990. 59: p. 129-70.
46. Moran, A.P., I.M. Helander, and T.U. Kosunen, Compositional analysis of Helicobacter pylori rough-form lipopolysaccharides. J Bacteriol, 1992. 174(4): p. 1370-7.
47. Walsh, E.J. and A.P. Moran, Influence of medium composition on the growth and antigen expression of Helicobacter pylori. J Appl Microbiol, 1997. 83(1): p. 67-75.
48. Moran, A.P., et al., Chemical characterization of Campylobacter jejuni lipopolysaccharides containing N-acetylneuraminic acid and 2,3-diamino-2,3-dideoxy-D-glucose. J Bacteriol, 1991. 173(2): p. 618-26.
49. Rietschel, E.T., et al., Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J, 1994. 8(2): p. 217-25.
50. Aspinall, G.O., et al., Lipopolysaccharide of the Helicobacter pylori type strain NCTC 11637 (ATCC 43504): structure of the O antigen chain and core oligosaccharide regions. Biochemistry, 1996. 35(7): p. 2489-97.
51. Monteiro, M.A., et al., Helicobacter pylori from asymptomatic hosts expressing heptoglycan but lacking Lewis O-chains: Lewis blood-group O-chains may play a role in Helicobacter pylori induced pathology. Biochem Cell Biol, 2001. 79(4): p. 449-59.
52. Green, C., The ABO, Lewis and related blood group antigens; a review of structure and biosynthesis. FEMS Microbiol Immunol, 1989. 1(6-7): p. 321-30.
53. Heneghan, M.A., C.F. McCarthy, and A.P. Moran, Relationship of blood group determinants on Helicobacter pylori lipopolysaccharide with host lewis phenotype and inflammatory response. Infect Immun, 2000. 68(2): p. 937-41.
54. Edwards, N.J., et al., Lewis X structures in the O antigen side-chain promote adhesion of Helicobacter pylori to the gastric epithelium. Mol Microbiol, 2000. 35(6): p. 1530-9.
55. Appelmelk, B.J., et al., Potential role of molecular mimicry between Helicobacter pylori lipopolysaccharide and host Lewis blood group antigens in autoimmunity. Infect Immun, 1996. 64(6): p. 2031-40.
56. Moran, A.P., M.M. Prendergast, and B.J. Appelmelk, Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS Immunol Med Microbiol, 1996. 16(2): p. 105-15.
57. Appelmelk, B.J., et al., Why Helicobacter pylori has Lewis antigens. Trends Microbiol, 2000. 8(12): p. 565-70.
58. Eaton, K.A., et al., Helicobacter pylori with a truncated lipopolysaccharide O chain fails to induce gastritis in SCID mice injected with splenocytes from wild-type C57BL/6J mice. Infect Immun, 2004. 72(7): p. 3925-31.
59. Chandan, V., et al., Characterization of a waaF mutant of Helicobacter pylori strain 26695 provides evidence that an extended lipopolysaccharide structure has a limited role in the invasion of gastric cancer cells. Biochem Cell Biol, 2007. 85(5): p. 582-90.
60. Altman, E., et al., Effect of the HP0159 ORF mutation on the lipopolysaccharide structure and colonizing ability of Helicobacter pylori. FEMS Immunol Med Microbiol, 2008. 53(2): p. 204-13.
61. Coleman, W.G., Jr., The rfaD gene codes for ADP-L-glycero-D-mannoheptose-6-epimerase. An enzyme required for lipopolysaccharide core biosynthesis. J Biol Chem, 1983. 258(3): p. 1985-90.
62. Ding, L., et al., Purification and properties of the Escherichia coli K-12 NAD-dependent nucleotide diphosphosugar epimerase, ADP-L-glycero-D-mannoheptose 6-epimerase. J Biol Chem, 1994. 269(39): p. 24384-90.
63. Kontrohr, T. and B. Kocsis, Isolation of adenosine 5'-diphosphate-D-glycero-D-mannoheptose. An intermediate in lipopolysaccharide biosynthesis of Shigella sonnei. J Biol Chem, 1981. 256(15): p. 7715-8.
64. Shih, G.C., et al., gmhX, a novel gene required for the incorporation of L-glycero-D-manno-heptose into lipooligosaccharide in Neisseria meningitidis. Microbiology, 2001. 147(Pt 8): p. 2367-77.
65. Drazek, E.S., D.C. Stein, and C.D. Deal, A mutation in the Neisseria gonorrhoeae rfaD homolog results in altered lipooligosaccharide expression. J Bacteriol, 1995. 177(9): p. 2321-7.
66. Nichols, W.A., et al., Identification of the ADP-L-glycero-D-manno-heptose-6-epimerase (rfaD) and heptosyltransferase II (rfaF) biosynthesis genes from nontypeable Haemophilus influenzae 2019. Infect Immun, 1997. 65(4): p. 1377-86.
67. Wierenga, R.K., P. Terpstra, and W.G. Hol, Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol, 1986. 187(1): p. 101-7.
68. Bellamacina, C.R., The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins. FASEB J, 1996. 10(11): p. 1257-69.
69. Read, J.A., et al., The mechanism of the reaction catalyzed by ADP-beta-L-glycero-D-manno-heptose 6-epimerase. J Am Chem Soc, 2004. 126(29): p. 8878-9.
70. Ni, Y., et al., Evidence that NADP+ is the physiological cofactor of ADP-L-glycero-D-mannoheptose 6-epimerase. J Biol Chem, 2001. 276(29): p. 27329-34.
71. Coleman, W.G., Jr. and L. Leive, Two mutations which affect the barrier function of the Escherichia coli K-12 outer membrane. J Bacteriol, 1979. 139(3): p. 899-910.
72. Coleman, W.G., Jr. and K.S. Deshpande, New cysE-pyrE-linked rfa mutation in Escherichia coli K-12 that results in a heptoseless lipopolysaccharide. J Bacteriol, 1985. 161(3): p. 1209-14.