簡易檢索 / 詳目顯示

研究生: 易斯南
Md. Minarul Islam
論文名稱: Organic Single-Crystal Field Effect Transistors: Fabrication and Structure-Property Correlation
有機單晶場效電晶體:製備與結構─性質關係
指導教授: 陶雨台
Tao, Yu-Tai
口試委員: 韓建中
Han, Chien-Chung
陶雨台
Tao, Yu-Tai
趙奕姼
Chao, Ito
孟心飛
Meng, Hsin-Fei
陳錦地
Chen, Chin-Ti
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 112
中文關鍵詞: 場效電晶體單晶有機半導體自組裝單分子層
外文關鍵詞: field-effect transistor, single crystal, organic semiconductor, self-assembled monolayer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Field-effect transistors based on single-crystals of organic semiconductors provide an opportunity to explore and compare the intrinsic charge transport behavior between different materials because the complication from morphology variations can be excluded. In this thesis, I reported the optical and electrochemical properties, crystal structures, and device performance of organic single-crystal field effect transistors (SCFETs) of a series of promising organic semiconductors.

    5,7,12,14-tetrachloro-6,13-diazapentacene (TCDAP) have a π-conjugated framework and showing a planar geometry with a shifted π-π stacking. The TCDAP–based SCFETs with top-gate/top-contact device exhibited very high electron mobility up to ~3.39 cm2 V-1 s-1 and high on/off ratio ~104 in ambient conditions. Substrate surface treatment with self-assemble monolayer greatly improved on/off ratio because the suppression of source-drain current leakage by the monolayer. A novel p-channel organic semiconductor pyreno[4,5-a]coronene (PRC) and 1,2,5,6,7,8,11,12- tetrabenzocoronene (TBC) were characterized. Both compounds have a non-planar or “contorted” geometry. The highly fused π-conjugated framework of PRC shows an excellent on-top cofacial π-π stacking in crystal structure. SCFETs based on PRC exhibited high mobility up to ~0.89 cm2 V-1 s-1 and an on/off ratio ~ 6x104. TBC shows a near co-facial π-π stacking, which allows strong electronic coupling. SCFETs based on TBC exhibited a high hole mobility up to ~1.05 cm2 V-1 s-1 and on/off ratio ~ 6.8x103 with the same device pattern. Another contorted molecule cata-hexabenzocoronene (HBC) forms a brick-wall type packing, with the edges of the molecule overlap with that of neighboring molecules. Bottom-gate/top-contact device was prepared for HBC and a high hole mobility up to ~0.51 cm2 V-1 s-1 and on/off ratio ~ 107 were achieved on rubbed n-octadecyltrichlorosilane (ODTS)-modified SiO2 dielectric surface. The mobility trend is discussed based on the electronic coupling involved in the crystal packing.

    Bottom-gate/top-contact device for 2,3-dimethylpentacene (DMPT) SCFETs was fabricated to investigate the effect of interfacial structure on the transistor properties. The insulator surface (Si/SiO2) was modified with various monolayers including n-octadecyltrichlorosilane (ODTS), n-nonyltrichlorosilane (NTS), hexamethyldisilazane (HMDS), 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS), 7-octenyltrichlorosilane (OCTS), 11-cyanoundecyltrichlorosilane (CUTS) and 12-aminododecyltrichlorosilane (ADTS). SCFETs of DMPT was prepared on the monolayer-modified substrate with or without rubbing of the monolayers. Rubbing of the SAM-modified substrate ensures better performance of all devices except HMDS treated device. The carrier mobility with unrubbed non-polar SAM treated surface was 3 to 5 time higher compare to unrubbed polar SAM modified devices. Polar end functional group may form less ordered SAM with rougher interface than non-polar SAM. Rubbing of ODTS modified-substrate led to the highest SCFET performance up to ~1.03 cm2 V-1 s-1. The worst SCFET performance was observed on unrubbed ADTS SAM-treated surface.

    Anthra[2,3-b]thiophene (compound 1), tetraceno[2,3-b]thiophene (compound 2), tetracene and pentacene SCFETs were fabricated using bottom-gate/top-contact device to study the effect of conjugation length. Compound 1 was shown to have same or slightly high mobility (up to ~0.31 cm2V-1s-1) than compound 2 (up to ~0.28 cm2V-1s-1) and pentacene was shown to give high mobility (up to ~0.56 cm2V-1s-1) than tetracene (up to ~0.37 cm2V-1s-1) with rubbed ODTS modified substrate. Top-gate/top-contact device also prepared for all compounds. Compound 2 has one more benzene ring than 1 and pentacene has also one ring more than tetracene. Therefore, compound 2 and pentacene have longer conjugation than compound 1 and tetracene respectively. The effect of conjugation length on the mobility is not obvious in that pentacene gives higher mobility than tetracene, whereas compound 1 gives better mobility than 2. This trend is nevertheless in agreement with theoretical calculation. Thus detailed packing and electronic coupling need to be considered.


    由於單晶場效電晶體 (SCFETs) 可排除薄膜形態變化等複雜因素,提供吾人一個探討與比較不同半導體材料的內在電荷傳輸行為的絕佳機會。本論文探討一系列有潛力的有機半導體分子的光學、電化學、晶體結構等物理性質以及用於單晶場效電晶體的元件效率。

    5,7,12,14-tetrachloro-6,13-diazapentacene (TCDAP) 具有π共軛框架,並呈現出平面幾何結構與偏移的π-π堆疊。該分子單晶場效電晶體的上閘極-上接觸 (top-gate / top-contact) 元件在常溫常壓下展現了高載子遷移率 (carrier mobility, μ~3.39 cm2 V-1 s-1) 以及高開/關電流比 (Ion / Ioff 〜104)。利用自組裝單分子層 (self-assembled monolayer, SAM) 修飾基材表面,因其可抑制源極-汲極之間的漏電,大大提高了開/關電流比。本實驗室設計、合成及鑑定了新穎P型有機半導分子 pyreno[4,5-a]coronene (PRC) 以及1,2,5,6,7,8,11,12-tetrabenzocoronene (TBC)。此二化合物具有非平面或「扭曲」的幾何形狀。PRC 分子的高度稠環 π 共軛框架於晶體結構中展現了出色的正上方、面對面的π-π 堆疊 (on-top cofacial π-π stacking)。 利用 PRC 建構的單晶場效電晶體展現了高載子遷移率 (μ~0.89 cm2 V-1 s-1) 及高開/關電流比 (Ion / Ioff ~6x104)。TBC 分子因其晶體結構幾近面對面的 π-π 堆疊,以致有很強的電子耦合效應。利用相同的元件模式,TBC 分子建構的單晶場效電晶體,其載子遷移率高達 1.05 cm2 V-1 s-1, 而其開/關電流比約為 6.8x103。另一種扭曲的分子,cata-hexabenzocoronene (HBC)形成了一個磚牆式堆積,每個分子的部分邊緣與相鄰的分子邊緣重疊。於經刷磨過 (rubbed) 的正-十八矽烷 (ODTS) 修飾過的表面上,建構下閘極-上接觸 (Bottom-gate / top-contact) 的電晶體元件,得到高電洞遷移率 (hole mobility, μ~0.51 cm2 V-1 s-1) 以及高開 / 關電流比 (Ion / Ioff ~107)。本論文從結晶堆疊中的電子耦合角度,討論其載子遷移率變化的趨勢。

    本論文亦利用2,3-二甲基五環素(2,3-dimethylpentacene, DMPT)單晶場效電晶體研究界面結構對電晶體性能的影響。先以不同的不同的有機矽烷,例如 n-octadecyltrichlorosilane (ODTS), n-nonyltrichlorosilane (NTS), hexamethyldisilazane (HMDS), 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS), 7-octenyltrichlorosilane (OCTS), 11-cyanoundecyltrichlorosilane (CUTS) 以及 12-aminododecyltrichlorosilane (ADTS)的單分子層修飾絕緣層表面。DMPT 分子的單晶場效電晶體則分別建構在刷磨/未刷磨的單分子層的表面上。除了HMDS單分子層外,其它有機單分子層經由刷磨處理後,皆使元件效率增強。經非極性單分子層修飾過的絕緣層表面,元件的載子遷移率在刷磨過的表面,相較於非刷磨過的表面提高了約3-5倍。而極性的單分子層,由於其尾端官能基可能排列較不規則,因而導致表面較非極性的SAM表面崎嶇。建構於刷磨過的ODTS單分子層表面的單晶場效電晶體元件效率最佳,其載子遷移率可達~1.03 cm2 V-1 s-1;而在同樣的系統中,建構於未刷磨過的ADTS單分子層表面的單晶場效電晶體元件效率最低。

    本論文亦探討利用Anthra[2,3-b]thiophene (化合物 1), tetraceno[2,3-b]thiophene (化合物 2), 四環素(tetracene) 以及五環素 (pentacene) 等分子,經由下閘極/上接觸 (bottom-gate/top-contact) 方式建構單晶場效電晶體,用以研究半導體分子共軛長度與電晶體元件的關係。於經刷磨的ODTS絕緣層表面上,化合物 1 與化合物 2的載子遷移率相近(分別為0.31 cm2V-1s-1 及 0.28 cm2V-1s-1),而pentacene ( μ ~0.56 cm2V-1s-1) 則較 tetracene (μ ~0.37 cm2V-1s-1) 為高。化合物2較化合物1多一個苯環,因此化合物2的共軛長度較化合物1長;同樣的,pentacene亦較tetracene多一個苯環,因而共軛長度較長。本論文研究亦為所有的化合物建構了上閘極/上接觸元件。結果顯示共軛長度與載子遷移率的關係並不一致。然而此結果與理論計算的結果卻相當吻合。因此需要考慮詳細的分子堆疊及電子耦合的詳細情況才能解釋其趨勢。

    Chapter 1: Introduction, Motivation and Outline of this Thesis Chapter 2: Basic concept on Organic Semiconductors and Field-Effect Transistor 2.1 Organic Semiconductors 2.2 Organic FETs and Its Device Configuration 2.3 OFET Interfaces 2.4 Operational Mode of OFET 2.5 Growth of Single-Crystal and Device Fabrication References Chapter 3: High-Mobility n-Channel Single-Crystal Field-Effect Transistors Based on 5,7,12,14-Tetrachloro-6,13-Diazapentacene 3.1 Introduction 3.2 Optical and Electrochemical Properties 3.3 Growth of Single-Crystal and X-ray Analyses 3.4 Device Fabrication and FET Characterization 3.5 Conclusion References Chapter 4: Crystal Structures and Charge Transport Properties of p-Channel Contorted Polynuclear Aromatic Hydrocarbons 4.1 Introduction 4.2 Optical and Electrochemical Properties 4.3 Single-Crystal Growth and X-ray Analysis 4.4 Device Fabrication 4.5 FET Characterization 4.6 Conclusion References Chapter 5: Organic single-crystal field effect transistors based on anthra[2,3-b]thiophene and tetraceno[2,3-b]thiophene 5.1 Introduction 5.2 Optical and Electrochemical Properties 5.3 Single-Crystal Growth 5.4 Device Fabrication and Electrical Characterization 5.5 Conclusion References Chapter 6: The Effect of Interfacial Structure on the Transistor Properties: Probing the Role of Surface Modification of Gate Dielectrics with Self-Assembled Monolayer using Dimethylpentacene Single-Crystal FETs 6.1 Introduction 6.2 Experimental 6.3 Results and Discussion 6.4 Conclusion References Chapter 7: Summary

    [1] Lilienfeld, J. E. US Patent 1745175, 1930.
    [2] Kahng, D.; Atalla, M. M. IRE Solid-State Devices Research Conference, Carnegie Institute of Technology, Pittsburgh, PA 1960.
    [3] (a) Forrest, S. R. Nature 2004, 428, 911. (b) Zhou, L.; Wanga, A.; Wu, S. C.; Sun, J.; Park, S.; Jackson, T. N. Appl. Phys. Lett. 2006, 88, 083502. (c) Gelinck, C.; Heremans, P.; Nomoto, K.; Anthopoulos, T. D. Adv. Mater. 2010, 22, 3778. (d) Ho, P. K. H.; Thomas, D. S.; Friend, R. H.; Tessler, N. Science 1999, 285, 233. (e) Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99.
    [4] (a) Schmidt-Mende, L.; Fechtenkötter, A.; Müllen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119. (b) Peumans, P.; Uchida, S.; Forrest, S. R. Nature 2003, 425, 158. (c) Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C. Appl. Phys. Lett. 2001, 78, 841. (d) Padinger, F.; Rittberger, R. S.; Sariciftci, N. S. Adv. Funct. Mater.2001, 11, 1.
    [5] (a) Scheinert, S.; Paasch, G. Phys. Status Solidi A 2004, 201, 1263. (b) Nishide, T.; Oyamada, T.; Akiyana, S.; Sasabe, H.; Adachi, C. Adv. Mater. 2006, 18, 3120.
    [6] (a) Crone, B. K.; Dodabalapur, A.; Sarpeshkar, R.; Gelperin, A.; Katz, H. E.; Bao Z. J. Appl. Phys. 2002, 91, 10140. (b) Potje-Kamloth, K. Chem. Rev. 2008, 108, 367.(c) Sekitani, T.; Someya, T. Adv. Mater. 2010, 22, 2228. (d) Torsi, L.; Dodabalapur, A.; Cioffi, N. ; Sabbatini, L. ; Zambonin, P. G. Sens. Actuators, B 2001, 77, 7.
    [7] (a) Rogers, J. A.; Bao, Z.; Baldwin, K.; Dodabalapur, A.; Crone, B.; Raju, V. R.; Kuck, V.; Katz, H.; Amundson, K.; Ewing, J.; Drzaic, P. Proc. Nat. Acad. Sci. 2001, 98, 4835. (b) Gelinck, G. H. ; Huitema, H. E. A.; van Veenendaal, E.; Cantatore, E.; Schrijnemakers, E.; van der Putten, J. B. P. H.; Geuns, T. C. T.; Beenhakkers, M.; Giesbers, J. B.; Huisman, B. H.; Meijer, E. J.; Benito, E. M.; Touwslager, F. J.; Marsman, A. W.; van Rens B. J. E.; de Leeuw, D. M. Nat. Mater. 2004, 3, 106.
    [8] (a) Naber, R. C. G.; Asadi, K.; Blom, P. W. M.; de Leeuw, D. M.; de Boer, B. Adv. Mater. 2010, 22, 933. (b) Voss, D., Nature 2000, 407, 442. (c) Tseng, C.-W.; Tao, Y.-T. J. Am. Chem. Soc. 2009, 131, 12441. (d) Baude, P. F.; Ender, D. A.; Haase, M. A.; Kelley, T. W.; Muyres, D. V.; Theiss, S. D. Appl. Phys. Lett. 2003, 82, 3964.
    [9] de Boer C. Organic LED Displays (OLEDs) − The Next Trend ?, available at http://www.audioholics.com/techtips/specsformats/organicOLEDsdisplays.php.
    [10] (a) Shaw, J. M.; Seidler, P. F.; IBM J. Res. & Dev. 2001, 45, 3. (b) Dimitrakopoulos, C. D.; Mascaro, D. J. IBM J. Res. Dev., 2001, 45, 11.
    [11] (a) Barbe, D. F.; Westgate, C. R. J. Phys. Chem. Solids 1970, 31, 2679. (b) Ebisawa, F.; Kurokawa, T.; Nara, S. J. Appl. Phys. 1983, 54, 3255.
    [12] (a) Tsumura, A.; Koezuka, H.; Ando, T. Appl. Phys. Lett. 1986, 49, 1210. (b) Koezuka, H.; Tsumura, A.; Ando, T. Synth. Met. 1987, 18, 699; (c) Tsumura, A.; Koezuka, H.; Ando, T. Synth. Met. 1988, 25, 11.
    [13] (a) Madru, R.; Guillaud, G.; Al Sadoun, M.; Maitrot, M.; Andre, J.-J.; Simon, J.; Even, R. Chem. Phys. Lett. 1988, 145, 343. (b) Clarisse, C.; Riou, M. T.; Gauneau, M.; Le Contellec, M. Electron. Lett. 1988, 24, 674.
    [14] Horowitze, G.; Fichou, D.; Peng, X.; Xu, Z.; Garnier, F. Solid State Commun. 1989,72, 381.
    [15] (a) Podzorov, V.; Pudalov, V. M.; Gershenson, M. E. Appl. Phys. Lett. 2003, 82, 1739. (b) Podzorov, V.; Sysoev, S. E.; Loginova, E.; Pudalov, V. M.; Gershenson, M. E. Appl. Phys. Lett. 2003, 83, 3504.
    [16] (a) Crone, B.; Dodabalapur, A.; Lin, Y. Y.; Filas, R. W.; Bao, Z.; LaDuca, A.; Sarpreshkar, R.; Katz, H. E.; Li, W. Nature 2000, 403, 521. (b) Muccini, M. Nat. Mater., 2006, 5, 605. (c) Schroeder, R.; Majewski, L. A.; Grell, M. Adv. Mater. 2004, 16, 633. (d) Tseng, C. W.; Tao, Y. T. J. Am. Chem. Soc. 2009, 131, 12441.
    [17] (a) Anthony, J. E. Angew. Chem. 2008, 120, 460. (b) Facchetti, A. Mater. Today 2007, 10, 28. (c) Dodabalapur, A. Mater. Today 2006, 9, 24. (d) Anthony, J. E. Chem. Rev. 2006, 106, 5028. (e) Dodabalapur, A. Nature 2005, 434, 151. (f) Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99.
    [18] (a) Haddon, R. C.; Perel, A. S.; Morris, R. C.; Palstra, T. T. M.; Hebard, A. F.; Fleming, R. M. Appl. Phys. Lett. 1995, 67, 121. (b) Laquindanum, J. G.; Katz, H. E.; Lovinger, A. J.; Dodabalapur, A. Chem. Mater. 1996, 8, 2542.
    [19] (a) Brédas, J. L.; Calbert, J. P.; da Silva, D. A.; Cornil. J. Proc. Natl. Acad. Sci. 2002, 99, 5804. (b) Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J.-L. Chem. Rev. 2007, 107, 926. (c) Wang, L.; Nan, G.; Yang, X.; Peng, Q.; Li, Q.; Shuai, Z. Chem. Soc. Rev. 2010, 39, 423. (d) Troisi, A. Adv. Polym. Sci. 2010, 223, 259.
    [20] (a) Nelson, S. F.; Lin, Y.-Y.; Gundlach, D. J.; Jackson, T. N. Appl. Phys. Lett. 1998, 72, 1854. (b) Osterbacka, R.; An, C. P.; Jiang, X. M.; Vardeny, Z. V. Science 2000, 287, 839. (c) Lee, K.; Heeger, A. J. Synth.. Met. 2002, 128, 279.
    [21] Curtis, M. D.; Cao, J.; Kampf, J. W. J. Am. Chem. Soc. 2004, 126, 4318.
    [22] Moon, H.; Zeis, R.; Borkent, E.-J.; Besnard, C.; Lovinger, A. J.; Siegrist, T.; Kloc, Ch. Bao, Z. J. Am. Chem. Soc. 2004, 126, 15322.
    [23] (a) Stassen, A. F.; de Boer, R. W. I.; Iosad, N. N. Appl. Phys. Lett. 2004, 85, 3899. (b) Reese, C.; Bao, Z. J. Mater. Chem. 2005, 16, 329 (c) de Boer, R. W. I.; Gershenson, M. E.; Morpurgo, A. F. Phys. Stat. Sol. (a) 2004, 201, 1302.
    [24] (a) Hasegawa, T.; Mattenberger, K.; Takeya, J.; Batologg, B. Phys. Rev. B 2004, 69, 245115. (b) Takeya, J.; Goldmann, C.; Haas, S.; Pernstich, K. P.; Ketterer, B.; Batlogg, B. J. Appl. Phys. 2003, 94, 5800. (c) de Boer, R. W. I.; Klapwijk, T. M.; Morpurgo, A. M. Appl. Phys. Lett. 2003, 83, 4345.
    [25] (a) Takeya, J.; Yamagishi, M.; Tominari, Y.; Hirahara, R.; Nakazawa, Y.; Nishikawa, T.; Kawase, T.; Shimoda, T.; Ogawa, S. Appl. Phys. Lett. 2007, 90, 102120. (b) Yamagishi, M.; Takeya, J.; Tominari, Y.; Nakazawa, Y.; Kuroda, T.; Ikehata, S.; Uno, M.; Nishikawa, T.; Kawase, T. Appl. Phys. Lett. 2007, 90, 182117.
    [26] (a) Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99. (b) Murphy, A. R.; Fréchet, J. M. J. Chem. Rev. 2007, 107, 1066. (c) Klauk, H. Chem. Soc. Rev. 2010, 39, 2643. (d) Zaumseil, J.; Sirringhaus, H. Chem. Rev. 2007, 107, 1296. (e) Rovira, C. Chem. Rev. 2004, 104, 5289. (f) Dong, H.; Wang, C.; Hu, W. Chem. Commun. 2010, 46, 5211.
    [27] (a) Anthony, J. E.; Facchetti, A.; Heeney, M.; Marder, S. R.; Zhan, X. Adv. Mater. 2010, 22, 3876. (b) Wen, Y.; Liu, Y. Adv. Mater. 2010, 22, 1331.
    [28] Crone, B.; Dodabalapur, A.; Lin, Y. Y.; Filas, R. W.; Bao, Z.; LaDuca, A.; Sarpeshkar, R.; Katz, H. E.; Li, W. Nature 2000, 403, 521.
    [29] (a) Yoon, M. H.; DiBenedetto, S. A.; Facchetti, A.; Marks, T. J. Am. Chem. Soc. 2005, 127, 1348. (b) Naraso, Nishida, J.; Kumaki, D.; Tokito, S. Yamashita, Y. J. Am. Chem. Soc. 2006, 128, 9598. (c) Bao, Z.; Lovinger, A. J.; Brown, J. J. Am. Chem. Soc. 1998, 120, 207. (d) Sakamoto, Y.; Suzuki, T.; Kobayashi, M.; Gao, Y.; Fukai, Y.; Inoue, Y.; Sato, F.; Tokio, S. J. Am. Chem. Soc. 2004, 126, 8138.
    [30] (a) See, K. C.; Landis, C.; Sarjeant, A.; Katz, H. E. Chem. Mater. 2008, 20, 3609. (b) Jung, B. J.; Sun, J.; Lee, T.; Sarjeant, A.; Katz, H. E. Chem.Mater. 2009, 21, 94. (c) Jones, B. A.; Ahrens, M. J.; Yoon, M. H.; Facchetti, A.; Marks, T. J.; Wasielewski, M. R. Angew. Chem, Int. Ed. 2004, 43, 6363. (d) Piliego, C.; Jarzab, D.; Gigli, G.; Chen, Z.; Facchetti, A.; Loi, M. A. Adv. Mater. 2009, 21, 1573.
    [31] Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices (Wiley, New York, 1981).
    [32] (a) Di, C.-a.; Liu, Y.; Yu, G.; Zhu, D. Acc. Chem. Res. 2009, 42, 1573. (b) Scholz, R.; Lehmann, D.; Müller, A.-D.; Müller, F.; Zahn, D. R. T. Phys. Stat. Sol. (a) 2008, 205, 591.
    [33] Scott, J. C. J. Vac. Sci. Technol. A. 2003, 21, 521.
    [34] Abkowitz, M.; Facci, J. S.; Rehm, J. J. Appl. Phys. 1998, 83, 2670.
    [35] (a) Veres, J.; Ogier, S.; Lloyd, G.; de Leeuw, D. Chem. Mater. 2004, 16, 4543. (b) Stassen, A. F.; de Boer, R. W. I.; Iosad, N. N.; Morpurgo, A. F. Appl. Phys. Lett. 2004, 85, 3899. (c) Zhang, X.-H.; Tiwari, S. P.; Kim, S.-J.; Kippelen, B. Appl. Phys. Lett. 2009, 95, 223303.
    [36] Podzorov, V.; Pudalov, V. M.; Gershenson, M. E. Appl. Phys. Lett. 2003, 82, 1739.
    [37] Xia, Y.; Kaihari, V.; Frsbie, C. D.; Oh, N. K.; Rogers, J. A. Appl. Phys. Lett. 2007, 90, 162106.
    [38] (a) Park, Y. D.; Lim, J. A.; Lee, H. S.; Cho, K. Mater. Today 2007, 10, 46. (b) Braga, D.; Horowitz, G. Adv. Mater. 2009, 21, 1473. (c) DiBenedetto, S. A.; Facchetti, A.; Ratner, M. A.; Marks, T. J. Adv. Mater. 2009, 21, 1407.
    [39] (a) Suemori, K.; Uemura, S.; Yoshida, M.; Hoshino, S.; Takada, N.; Kodzasa, T.; Kamata, T. Appl. Phys. Lett. 2008, 93, 033308. (b) Fritz, S. E.; Kelley, T. W.; Frisbie, C. D. J. Phys. Chem. B 2005, 109, 10574. (c) Steudel, S.; De Vusser, S.; De Jonge, S.; Janssen, D.; Verlaak, S.; Genoe, J.; Heremans, P. Appl. Phys. Lett. 2004, 85, 4400. (d) Okamuraa, K.; Hahn, H. Appl. Phys. Lett. 2010, 97, 153114.
    [40] (a) Miozzo, L.; Yassar, A.; Horowitz, G. J. Mater. Chem. 2010, 20, 2513. (b) Lee, W. H.; Cho, J. H.; Cho, K. J. Mater. Chem. 2010, 20, 2549.
    [41] (a) Kiguchi, M.; Nakayama, M.; Shimada, T.; Saiki, K. Phys. Rev. B 2005, 71, 035332. (b) Hayakawa, R.; Petit, M.; Chikyow, T.; Wakayama, Y. Appl. Phys. Lett. 2008, 93, 153301. (c) Fritz, S. E.; Martin, S. M.; Frisbie, C. D.; Ward, M. D.; Toney, M. F. J. Am. Chem. Soc. 2004, 126, 4084. (d) Ruiz, R.; Papadimitratos, A.; Mayer, A. C.; Malliaras, G. G. Adv. Mater. 2005, 17, 1795. (e) Dinelli, F.; Murgia, M.; Levy, P.; Cavallini, M.; Biscarini, F.; Leeuw, D. M. D. Phys. Rev. Lett. 2004, 92, 116802.
    [42] (a) Weng, S.-Z.; Hu, W.-S.; Kuo, C.-H.; Fan, L.-J.; Yang, Y.-W.; Tao, Y.-T. Appl. Phys. Lett. 2006, 89, 172103. (b) Kang, S.-J.; Noh, Y.-Y.; Baeg, K.-J.; Ghim, J.; Park, J.-H.; Kim, D.-Y.; Kim, J. S.; Park, J. H.; Cho, K. Appl. Phys. Lett. 2008, 92, 052107.
    [43] (a) DiBenedetto, S. A.; Facchetti, A.; Ratner, M. A.; Marks, T. J. Adv. Mater. 2009, 21, 1407. (b) Sun, X.; Di, C.-a.; Liu, Y. J. Mater. Chem. 2010, 20, 2599.
    [44] (a) Kim, D. H.; Lee, H. S.; Yang, H.; Yang, L.; Cho, K. Adv. Funct. Mater. 2008, 18, 1363. (b) Suemori, K.; Uemura, S.; Yoshida, M.; Hoshino, S.; Takada, N.; Kodzasa, T.; Kamata, T. Appl. Phys. Lett. 2007, 91, 192112.
    [45] (a) Takeya, J.; Nishikawa, T.; Takenobu, T.; Kobayashi, S.; Iwasa, Y.; Mitani, T.; Goldmann, C.; Krellner, C.; Batlogg, B. Appl. Phys. Lett. 2004, 85, 5078. (b) Huang, C.; Howard E. Katz, H. E.; West, J. E. Langmuir 2007, 23, 13223. (c) Kobayashi, S.; Nishikawa, T.; Takenobu, T.; Mori, S.; Shimoda, T.; Mitani, T.; shimotani, H.; Yoshimoto, N.; Ogawa, S.; Iwasa, Y. Nat. Mater. 2004, 3, 317. (d) Fleischli, F. D.; Suárez, S.; Schaer, M.; Zuppiroli, L. Langmuir 2010, 26, 15044.
    [46] Bao, Z.; Locklin, J. Organic Field-Effect Transistors (CRC Press, Taylor & Francis Group, 2006).
    [47] (a) Marcus, R. A. Rev. Mod. Phys. 1993, 65, 599. (b) Marcus, R. A.; Eyring, H. Annu. Rev. Phys. Chem. 1964, 15, 155. (c) Hush, N. S. J. Chem. Phys. 1958, 28, 962.
    [48] (a) Laudise, R. A.; Kloc, Ch.; Simpkins, P. G.; Siegrist, T. J. Crystal Growth 1998, 187, 449. (b) Roberson, L. B.; Kowalik, J.; Tolbert, L. M.; Kloc, Ch.; Zeis, R.; Chi, X.; Fleming, R.; Wilkins, C. J. Am. Chem. Soc. 2005, 127, 3069.
    [49] Podzorov, V.; Sysoev, S. E.; Loginova, E.; Pudalov, V. M.; Gershenson, M. E. Appl. Phys. Lett. 2003, 83, 3504.
    [50] Dabestani, R.; Nelson, M.; Sigman, M. E. Photochem. Photobiol. 1996, 64, 80.
    [51] de Boer, R. W. I.; Jochemsen, M.; Klapwijk, T. M.; Morpurgo, A. F.; Niemax, J.; Tripathi, A. K.; Pflaum, J. J. Appl. Phys. 2004, 95, 1196.
    [52] (a) Gundlach, D. J.; Nichols, J. A.; Zhou, L.; Jackson, T. N. Appl. Phys. Lett. 2002, 80, 2925. (b) Knipp, D.; Street, R. A.; Völkel, A.; Ho, J. J. Appl. Phys. 2003, 93, 347. (c) Klauk, H.; Halik, M.; Zschieschang, U.; Schmid, G.; Radlik, W.; Weber, W. J. Appl. Phys. 2002, 92, 5259.
    [53] Yagi, I.; Tsukagoshi, K.; Aoyagi, Y. Appl. Phys. Lett. 2005, 86, 103502.
    [54] Fritz, S. E.; Kelly, T. W.; Frisbie, C. D. J. Phys. Chem. B 2005, 109, 10574.
    [55] de Boer, R. W. I.; Gershenson, M. E.; Morpurgo, A. F.; Podzorov, V. Phys. Status Solidi (a) 2004, 201, 1302.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE