簡易檢索 / 詳目顯示

研究生: 陳宗漢
論文名稱: 以微波加熱奈米碳管製作場發射元件及二維奈米陣列於軟性基板之研究
On fabrication of field emission devices and two-dimensional nanoarrays on flexible substrates by microwave heating of carbon nanotubes
指導教授: 張士欽
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 88
中文關鍵詞: 奈米碳管微波奈米球場發射
外文關鍵詞: carbon nanotube, microwave, nanosphere, field emission
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract

    CNTs can be fast and selectively heated by microwave irradiation and PS nanospheres can be arranged to form a 2D array are the two core techniques practiced in this thesis. The CNTs used in this work were commercial CNT powders and CNTs synthesized by the author with microwave heating chemical vapor deposition (CVD) or thermal CVD by Professor Tai’s group. Fluffy CNT films and vertically aligned CNT films grown by thermal chemical vapor deposition (CVD) can be directly bonded on thermoplastic polymers by microwave heating. In this way, CNTs heated by microwave irradiation can be used as a “solder” to join two pieces of polymer sheet together.
    Screen printing was used to print a large area of CNT network on a polymer substrate. Commercial SWCNT and MWCNT powders were mixed with a dispersant solution (S-20000) by three-roller milling to form uniform CNT pastes for screen printing. After the printed CNT network was fixed on polymer by microwave heating, dispersant was removed by ultrasonic bathing. A field emission device made of printed CNTs which work both as conductors and field emitters was demonstrated. A low turn-on field of 1.0 V/μm at the current density of 10 μA/cm2 was achieved from SWCNT networks.
    To reduce the screening effect of the CNTs network, the using of a meshed cover attached by microwave heating again to the CNT network was studied. Two different kinds of meshed covers were used to attach to the continuous CNT network. The first one is a 3 µm thick patterned photo-resistant layer made on a glass substrate with holes formed by photo-lithography process. The other one is a 375 µm thick PC film with holes drilled by CO2 laser. The turn-on field could be reduced to 0.65 V/μm when the SWCNT network was attached by a meshed cover with patterned 500 μm holes. This unique method provides a good way to enhance the field emission characteristic of the continuous CNT network.
    Self-assembled PS nanosphere arrays on Si substrates can be obtained on hydrophilic treated Si substrates by spin-coating. Monolayer nanosphere arrays could be used as templates for many 2D nanostructures. In this work, an organic Ni honeycomb was formed by dripping organic Ni solution into 2D nanosphere array. After baking in air at 350oC for 30 min, a nickel oxide nanohoneycomb was obtained and could be as the reaction nanovessels. Gold or silver film deposited on the nanohoneycomb could be transformed into separated nanoparticles in individual nanovessels by annealing.
    For another application, the 2D nanosphere array can be covered by depositing of metallic layer. Thus, 2D metallic nanoshell array was formed. Due to the larger surface area and reduced screening effect, the field emission characteristic of the random CNTs grown on the Ni/Al nanoshell array shows better result than the CNTs grown on a flat Si substrate.
    By combining two core techniques, CNTs fixed directly on polymer by microwave heating and 2D nanostructure based on monolayer nanosphere arrays, a new architecture of 2D metallic nanobowl array transferred onto a thermoplastic polymer substrate was fabricated. Vertically aligned CNT film grown on a hemispherical nanoshell array and then transferred onto a PC substrate by microwave heating. The metallic nanoshell array now on the top of the transferred CNT film was concave upward as an array of 2D close-packed nanobowls. The nanobowl array can diffract light and showing different colors at different angles. Discrepancies between the observed reflective spectra of 2D nanobowl array and that predicted from measured array dimensions by basic diffraction relationship were studied. It is suggested that the discrepancies is related to the geometry and the refractive index of the bowl materials. Transferred CNT film with nanobowl array molded surface morphology was made successfully which could reduce the screening effect for field emission of a flat CNT forest surface.

    摘要

    奈米碳管可以被微波快速地加熱,以及聚苯乙烯奈米球排列成二維陣列是本論文的兩項核心技術。本研究中使用的奈米碳管包含商業化的奈米碳管粉末、微波加熱化學氣相沈積方式製作的奈米碳管和戴念華老師實驗室所成長的奈米碳管。棉絮狀的奈米碳管薄膜和垂直排列的奈米碳管薄膜都可以微波加熱,直接地結合在熱塑性的高分子上。以此方式,奈米碳管被微波照射加熱可以當成”焊料”將兩片高分子連結在一起。
    使用網板印刷可以印製大面積的奈米碳管網路於高分子基板上。以三軸滾輪機將商業化單壁奈米碳管和多壁奈米碳管混合分散劑(S-20000)製成均勻的奈米碳管漿料。微波加熱網印的奈米碳管網路後,用超音波去除分散劑。以網印奈米碳管製作的場發射元件,奈米碳管同時作為導體及場發射源。單壁奈米碳管網路可以得到低的起始電場為1.0 V/μm在電流密度為10 μA/cm2時。
    為了減少奈米碳管網路的遮蔽效應,將孔洞遮罩以微波再一次加熱貼附於奈米碳管網路之上。使用兩種不同的孔洞遮罩去貼附奈米碳管網路。第一種是以黃光微影製作在玻璃片上,厚度3μm且具有圓孔圖案的光阻層。另一種是厚度375μm的聚碳酸脂薄膜以雷射鑽孔製作的圓孔遮罩。當單壁奈米碳管網路被直徑500μm的孔洞遮罩貼附時,起始電場可以降低至0.65 V/μm。此種獨特的方法提供一個有效的方式,用以增強連續奈米碳管網路的場發射特性。
    自組裝聚苯乙烯奈米球以旋鍍的方式製作於親水處理後的矽基板上。單層的奈米球陣列可以作為各式二維奈米結構的模板。本研究中,將有機鎳溶液滲入二維奈米球陣列中可以形成有機鎳的蜂巢結構。在大氣環境中以350 oC烘烤30分鐘得到氧化鎳的奈米蜂巢結構,它可以被當成奈米反應容器。沈積在奈米蜂巢結構上的金或銀薄膜在退火後,會變成分散的奈米顆粒在個別的奈米容器中。二維奈米球陣列可以藉由沈積金屬層將其覆蓋而形成二維金屬球殼。由於較大的表面積和降低遮蔽效應,成長在金屬球殼上的散亂奈米碳管比成長在平坦矽基板上的奈米碳管具有更好的場發射特性。
    藉由結合兩種核心技術-奈米碳管以微波加熱固著於高分子,以及基於單層奈米球陣列所製成的二維奈米結構-製作了一種新的結構,在熱塑性基板上轉印二維金屬奈米碗陣列。垂直排列的奈米碳管薄膜成長在半球形奈米球殼陣列,然後以微波加熱轉印至聚碳酸脂基板。金屬奈米球殼翻轉至轉印的奈米碳管薄膜之上,形成凹面朝上的二維緊密堆積奈米碗陣列。此種奈米碗陣列可以使光繞射,在不同的視角展現出不同的顏色。量測所得的奈米碗陣列反射光譜與基本繞射關係式所預測的有所偏差。此偏差和陣列的幾何形狀以及碗材質的反射係數有關連。也成功地製作了具有奈米碗型表面型態的轉印奈米碳管薄膜,可以降低平坦奈米碳管膜的場發射遮蔽效應。


    Abstract……………………………………………………………………………….2 摘要……………………………………………………………………………............5 致謝……………………………………………………………………………………7 Contents……………………………………………………………………………….8 Chapter 1 Introduction…………………………………………………………………………10 Chapter 2 Literature review......................................................................................13 2-1 Field emission of carbon nanotubes………………………………………….14 2-1-1 Theory of field emission……………………………………………….14 2-1-2 The Fowler-Nordheim plot…………………………………………….15 2-1-3 Methods of enhancing the field emission of CNTs……………………16 2-1-4 Flexible field emitters………………………………………………….20 2-2 Nanosphere arrays……………………………………………………………22 2-2-1 Self-assembly of 2D nanosphere array………………………………...22 2-3-2 2D nanostructures based on nanosphere arrays………………………..23 2-3 Microwave heating…………………………………………………………..27 2-3-1 Mechanisms of microwave heating……………………………………27 2-3-2 The respondence of carbon nanotubes to microwave………………….28 2-3-3 Other applications of microwave used in carbon nanotubes…………..29 2-4 On the transfer and printing of CNTs………………………………………..30 Chapter 3 Experimental……………………………………………………………35 3-1 Screen printing of CNT networks…………………………………………..35 3-2 CNTs bonded to thermoplastic polymers by microwave heating…………..36 3-3 Self-assembly of polystyrene nanosphere array…………………………….36 3-4 CNTs grown by microwave heating CVD………………………………….37 3-5 Vertically aligned CNTs film grown by thermal CVD……………………...37 3-6 Transferring by microwave heating………………………………………...37 3-7 Observation and analysis…………………………………………………...38 Chapter 4 The CNT field emission devices fabricated on thermoplastic substrates by microwave heating of CNTs…………………………………………………….40 4-1 CNTs bonded on thermoplastic substrates by microwave heating…………40 4-2 CNT networks fixed on thermoplastic substrates by screen printing and microwave heating…………………………………………………………47 4-3. Field emission characteristics of CNT networks………………………….49 4-4. The CNT field emission device with a meshed cover attached by microwave heating……………………………………………………………………..51 Chapter 5 Fabrication and properties of two-dimensional nanoscale arrays…..61 5-1 Nanohoneycomb from nanosphere array…………………………………..61 5-2 CNTs grown on 2D metallic nanoshell array by microwave CVD………..63 5-3 2D metallic nanobowl arrays transferred onto thermoplastic substrates by microwave heating of CNTs……………………………………………….67 5-4 Light diffracted by a nanobowl array on flexible substrate………………...71 5-5Field emission characteristics of CNTs with nanobowl array molded surface………………………………………………………………….......75 Chapter 6 Conclusions……………………………………………………………...79 Future works………………………………………………………………………...81 Reference…………………………………………………………………………….82

    1. E. W. Wong, P. E. Sheehan, and C. M. Lieber Sicence, 277, 1971 (1997).

    2. A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. Treacy, Physical Review B, 58, 14013 (1998).

    3. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T.s F. Kelly and R. S. Ruoff, Science, 287, 637 (2000).

    4. S. Berber, Y. K. Kwon, and D. Tomanek, Phys. Rev. Lett., 84, 4613 (2000).

    5. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, Nature, 382, 54 (1996).

    6. R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, Appl. Phys. Lett., 73, 2774 (1998).

    7. A. Javey, J. Guo, Q Wang, M. Lundstrom, and H. J. Dai, Nature, 424, 654 (2003)

    8. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, Appl. Phys. Lett., 75, 3129 (1999).

    9. D. S. Chung, W. B. Choi, J. H. Kang, H. Y. Kim, I. T. Han, Y. S. Park, Y. H. Lee, N. S. Lee, J. E. Jung, and J. M. Kim, J. Vac. Sci. Technol B, 18, 1054 (2000).

    10. J. M. Bonard, N. Weiss, H. Kind, T. Stockli, L. Forro, K. Kern, and A. Chatelain, Adv. Mater., 13, 184 (2001).

    11. H. J. Jeong, H. K. Choi, G. Y. Kim, Y. Song, Y. Tong, S. C. Lim, and Y. H. Lee, Carbon, 44, 2689 (2006).

    12. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. J. Dai, Science, 287, 622 (2000).

    13. Y. Lin, F. Lu, Y. Tu, and Z. F. Ren, Nano Lett., 4, 191 (2004).

    14. D. Qian, E. C. Dickey, R. Andrews and T. Rantell, Appl. Phys. Lett., 76, 2868 (2000).
    15. M. S. P. Shaffer, A. H. Windle, Adv. Mater., 11, 937 (1999).

    16. L. S. Schadler, S. C. Giannaris, and P. M. Ajayan, Appl. Phys. Lett., 73, 3842 (1998).

    17. T. J. Imholt, C. A. Dyke, B. Hasslacher, J. M. Perez, D. W. Price, J. A. Roberts, J. B. Scott, A. Wadhawan, Z. Ye, and J. M. Tour, Chem. Mater., 15, 3969 (2003).

    18. A. Wadhawan, D. Garrett, and J. M. Perez, Appl. Phys. Lett., 83, 2683 (2003).

    19. H. Y. Lin, H. Zhu, H. F. Guo, and L. F. Yu, Mater. Lett., 61, 3547 (2007).

    20. H. Zhu, H. Y. Lin, H. F. Guo, and L. F. Yu, Mater. Sci. Eng. B, 138, 101 (2007).

    21. Y. C. Choi, Y. M. Shin, S. C. Lim, D. J. Bae, Y. H. Lee, and B. S. Lee, J. Appl. Phys., 88, 4898 (2000).

    22. Y. Y. Wang, S. Gupta, and R. J. Nemanich, Appl. Phys. Lett., 85, 2601 (2004).

    23. C. J. Ko, C. Y. Lee, F. H. Ko, H. L. Chen, and T. C. Chu, Microelectronic Engineering, 73-74, 570, (2004).

    24. S. Yoshida, T. Mitsumata, and M. Sano, Chemistry Letters, 35, 262 (2006).

    25. M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, Science, 309, 1215 (2005).

    26. C. Y. Wang, T. H. Chen, S. C. Chang, T. S. Chin, and S. Y. Cheng, Appl. Phys. Lett., 90, 103111 (2007).

    27. C. Y. Wang, T. H. Chen, S. C. Chang, S. Y. Cheng, and T. S. Chin, Adv. Funct. Mater., 17, 1979 (2007).

    28. C. C. Kei, T. H. Chen, C. M. Chang, C. Y. Su, C. T. Lee, C. N. Hsiao, S. C. Chang, and T. P. Perng, Chem. Mater., 19, 5833-5835 (2007).

    29. T. H. Chen, T. Y. Tsai, K. C. Hsieh, S. C. Chang, N. H. Tai, and H. L. Chen, Nanotechnology, 19, 465303 (2008).
    30. S. Iijima, Nature, 354, 56 (1991).

    31. C. T. Whiteand T. N. Todorov, Nature, 393, 240 (1998).

    32. B. Q. Wei, R. Vajtai, and P. M. Ajayan, Appl. Phys. Lett., 79, 1172 (2001).

    33. Y. Cheng and O. Zhou, C. R. Physique, 4, 1021 (2003).

    34. P. G. Collins and A. Zettl, Phys. Rev. B, 55, 9391 (1997).

    35. R. Collazo, R. Schlesser, and Z. Sitar, Diamond Relat. Mater., 11, 769 (2002).

    36. Y. Chen, S. Z. Deng, N. S. Xu, J. Chen, X. C. Ma, and E. G. Wang, Mater. Sci. Eng., A 327, 16 (2002).

    37. K. A. Dean and B. R. Chalamala, Appl. Phys. Lett., 76, 375 (2000).

    38. J. Zhang, X. Wang, W. Yang, W. Yu, T. Feng, Q. Li, X. Liu, and C. Yang, Carbon, 44, 418 (2006)

    39. J. Zhang, C. Yang, W. Yang, T. Feng, X. Wang, and X. Liu, Solid State Communication, 138, 13 (2006).

    40. T. J. Vink, M. Gillies, J. C. Kriege, and H. W. J. J. van de Laar, Appl. Phys. Lett., 83, 3552 (2003).

    41. H. J. Lee, Y. D. Lee, W. S. Cho, B. K. Ju, Y. H. Lee, J. H. Han, and J. K. Kim, Appl. Phys. Lett., 88, 093115 (2006).

    42. P. Liu, L. Liu, Y. Wei, L. Sheng, and S. Fan, Appl. Phys. Lett., 89, 073101 (2006).

    43. O. J. Lee and K. H. Lee, Appl. Phys. Lett., 82, 3770 (2003).

    44. J. H. Choi, J. H. Park, J. S. Moon, J. W. Nam, J. B. Yoo, C. Y. Park, J. H. Park C. G. Lee, and D. H. Choe, Diamond Relat. Mater., 15, 44 (2006).

    45. T. Kita, Y. Hayashi, O. Wada, H. Yanagi, Y. Kawai, A. Magario, and T. Noguchi, J. J. Appl. Phys., 45, L1186 (2006).
    46. U. C. Fisher and H. P. Zingsheim, J. Vac. Sci. Technol., 19, 881 (1981).

    47. H. W. Deckman and J. H. Dunsmuir, Appl. Phys. Lett., 41, 377 (1982).

    48. H. W. Deckman and J. H. Dunsmuir, J. Vac. Sci. Technol. B, 1, 1109 (1983).

    49. X. D. Wang, C. Lao, E. Gruagnard, C. J. Summers, and Z. L. Wang, Nano Lett., 5,1784 (2005).

    50. J. Rybczynski, K. Kempa, Y. Wang, Z. F. Zen, J. B. Carlson, B. R. Kimball, and G. Benham, Appl. Phys. Lett., 88, 203122 (2006).

    51. X. Wang, C. Neff, E. Graugnard, Y. Ding, J. S. King, L. A. Pranger, R. Tannenbaum, Z. L. Wang, and C. J. Summers, Adv. Mater., 17, 2103 (2005).

    52. A. Kosiorek, W. Kandulski, H. Glaczynsha, and M. Giersig, Small, 1, 439 (2005).

    53. B. E. Yoldas and D. P. Partlow, Appl. Opt., 23, 1418 (1984).

    54. S. Hayashi, Y. Kumamoto, T. Suzuki, and T. Hirai, J. Colloid Interface Sci., 144, 538 (1991).

    55. Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, Nature, 414, 289 (2001).

    56. H. Miguez, F. Meseguer, C. Lopez, A. Blanco, J. S. Moya, J. Requena, A. Mifsud, and V. Fornes, Adv. Mater., 10, 480 (1998).

    57. I. M. Krieger and F. M. O’Neill, J. Am. Chem. Soc., 90, 3114 (1968).

    58. B. V. Duffel, R. H. A. Ras, F. C. De Schryver, and R. A. Schoonheydt, J. Mater. Chem., 11, 3333 (2001).

    59. M. Ishii, M. Harada, A. Tsukigase,, and H. Nakamura, J. Opt. A: Pure Appl. Opt., 9, S372 (2007).

    60. A. Rogach, A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Mohwald, A. Eychmuller, and H. Weller, Adv. Mater., 12, 333 (2000).

    61. J. C. Hulteen and R. P. Van Duyne, J. Vac. Sci. Technol. A, 13, 1553 (1995).

    62. J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, J. Phys. Chem., 103, 3854 (1999).

    63. M. Winzer, M. Kleiber, N. Dix, and R. Wiesendanger, Appl. Phys. A, 63, 617 (1996).

    64. V. Kitaev and G. A. Ozin, Adv. Mater., 15, 75 (2003).

    65. H. Ko, H. W. Lee, and J. Moon, Thin Solid Films, 447-448, 638 (2004).

    66. R. Micheletto, H. Fukuda, and M. Ohtsu, Langmuir, 11, 3333 (1995).

    67. F. Burnmeister, W. Badowsky, T. Braun, S. Weiprich, J. Boneberg, and P. Leiderer, Appl. Surf. Sci., 144-145, 461(1999).

    68. J. Rybczynski, U. Ebels, and M. Giersig, Colloids and Surfaces A, 219, 1 (2003).

    69. M. Marquez and B. P. Grady, Langmuir, 20 , 10998 (2004).

    70. Y. H. Cho, G.Cho, and J. S. Lee, Adv. Mater., 16, 1814 (2004).

    71. C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B, 105, 5599 (2001).

    72. Z. P. Huang, D. L. Carnahan, J. Rybczynski, M. Giersig, M. Sennett, D. Z. Wang, J. G. Wen, K. Kempa, and Z. F. Ren., Appl. Phys. Lett., 82, 460 (2003).

    73. D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, C. Y. Wang, and S. S. Xie, Nano Lett., 6, 2375 (2006).

    74. X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang,. and C. J. Summers, Nano Lett., 5, 1784 (2005).

    75. Y. Li, C. Li, S. O. Cho, G. Duan, and W. Cai, Langmuir, 23, 9802 (2007).

    76. J. Chen, D. Chao, X. Lu, W. Zhang, and S. K. Manohar, Macromol. Rapid Commun., 27, 771 (2006).

    77. D. E. Clark, D. C. Folz, and J. K. West, Mater. Sci. Eng., A287, 153 (2000).

    78. C. Bower and O. Zhou, Appl. Phys. Lett., 77, 2767 (2000).

    79. M. Yudasaka, R. Kikuchi, T.o Matsui, Y. Ohki, and S. Yoshimura, Appl. Phys. Lett., 67, 2477(1995).

    80. A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodriguez-Macias, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, Appl. Phys. A, 67, 29 (1998).

    81. E. Dujardin, T. W. Ebbesen, A. Krishnan, and M. M. J. Treacy, Adv. Mater., 10, 611 (1998).

    82. S. Bandow, A. M. Rao, K. A. Williams, A. Thess, R. E. Smalley, and P. C. J. Eklund, Phys. Chem. B, 101, 8839 (1997).

    83. H. X. Wu, X. Q. Qiu, W. M. Cao, Y. H. Lin, R. F. Cai, and S. X. Qian, Carbon, 45, 2866 (2007).

    84. A. Kumar. V. L. Pushparaj, S. Kar, O. Nalamasu, and P. M. Ajayan, Appl. Phys. Lett., 89, 163120 (2006).

    85. C. C. Chiu, T. Y. Tsai, and N. H. Tai, Nanotechnology, 17, 2840 (2006).

    86. O. Yaglioglu, R. Martens, A. J. Hart, and A. H. Slocum, Adv. Mater., 20. 357 (2008).

    87. A. Allen, A. Cannon, J. Lee, W. P. King, and S. Graham, J. Micromech. Microeng., 16, 2722 (2006).

    88. Y. Zhu, X. Lim, M. C. Sim, C. T. Lim, and C. H. Sow, Nanotechnology, 19, 325304 (2008).

    89. J. Chen, Y. Liu, A. I. Minett, C. Lynam, J. Wang, and G. G. Wallace, Chem. Mater., 19, 3595 (2007).
    90. Y. J. Jung, S. Kar, S. Talapatra, C, Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, and P. M. Ajayan, Nano Lett., 6, 413 (2006).

    91. Y. Zhou, L. Hu, and G. Gruner, Appl. Phys. Lett., 88, 123109 (2006).

    92. K. Yoshihara, S. Fujii, H. Kawai, K. Ishida, S. I. Honda, and M. Katayama, Appl. Phys. Lett., 91, 113109 (2007).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE