簡易檢索 / 詳目顯示

研究生: 張世徵
論文名稱: FLOTHERM在筆記型電腦之熱設計分析與應用
指導教授: 施純寬
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 89
中文關鍵詞: 筆記型電腦散熱
外文關鍵詞: Notebook, Heat Dissipation, FLOTHERM
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 筆記型電腦的散熱技術一直是需要不斷的開發與研究的。隨著電腦內部散熱問題的日益嚴重,除了尋求更創新的散熱方案之外,應確實改善原有的散熱設計缺失,進而有效地將廢熱移除於功率逐漸增強的電子電路之中。因此如何正確與有效的應用數值分析軟體,使我們能夠更進一步了解電腦系統內部的散熱狀態與行為模式,從而分析與改善電腦系統內部散熱機制使其達到理想的操作環境溫度與CPU核心溫度,為本論文主要的研究方向與目標。
    本論文的研究主要偏向於改善筆記型電腦系統之散熱設計,並整理出一套如何有效進行筆記型電腦散熱設計的分析程序與方法,並將個人的研究心得與建議做一份完整的報告。首先,我們使用FLOTHERM 2.2模擬分析軟體,對現有的筆記型電腦進行初步模擬分析。並藉由其模擬計算的結果,從中細部分析與探討系統中熱量與氣流的傳遞行為模式。其次,我們針對其熱設計上的缺失提出具體的改善對策(如:消除熱區、優化風扇效能及散熱片改良設計等)。我們將依照所提出具體的改善方案來進行系統內部的散熱設計,同時將CPU單位體積的散熱功率提升為原來的三倍,並將筆記型電腦系統內部的最高溫度值控制在比先前初步模擬分析所得溫度之下,來證明新的散熱設計組合有更優越的散熱能力。

    經由模擬分析之結果,我們可以歸納以下幾個結論:(1)我們考慮風扇的出口方向與其裝設的位置,將其擺放至散熱片的高溫分佈區域,並配合風扇出口的空氣流速加以改善原有散熱片的設計。經由比較性模擬(使用與筆記型電腦初步模擬相同發熱功率的CPU元件),其系統中發生的最高溫度比起在初步分析中的溫度低了將近27°C。(2)為了有效避免在散熱片表面上經由對流所散出的廢熱會經由向上之對流擴散而停滯在電腦系統內部之中。因此,我們考慮導管型散熱片的設計,並於導管內部進行強制對流散熱,經由模擬分析結果其可為系統帶來額外1°C至3.5°C的溫降空間(視導管內部散熱片數量而定)。(3)由於在導管內部設置散熱片會嚴重影響風扇出口的流速,因此我們將散熱片移至導管外部以自然對流的方式進行散熱,經由模擬分析結果其最佳自然對流散熱條件可為系統帶來額外6°C的溫降空間。(4)由於銅材的熱傳導系數約為杜拉鋁材的2.5倍之多,因此我們考量其優越的熱傳導性能並顧及其加工製造上的不便性,試著以配合銅材的設計方式,將散熱導管的CPU承熱鋁片改用為銅片,經由模擬分析結果其可為系統帶來額外17°C的溫降空間。(5)最後考量其風扇只具有單一之側出風口,可能會造成風扇系統內部過大之壓力產生。因此在筆記型電腦有限的空間內部,我們考慮雙導管型散熱片的設計,經由模擬分析結果其可為系統帶來額外12.4°C的溫降空間。


    Notebook heat dissipation technique(s) has always been a subject with continuous research and development needs. The necessity to improve existing methods of heat dissipation and develop new dissipation techniques, is particularly important in the face of improved electronic circuitry efficiencies. In this regard, the objective of the present thesis is to investigate and discuss the appropriate use of Applied Numeric Analysis software for the purposes of understanding how and under what conditions heat dissipation occurs, in order to achieve improvements in current heat dissipation techniques, and to attain ideal CPU temperature and internal systems heat control.
    We began our study by first using the Flotherm 2.2 simulation software to provide a basic internal notebook systems thermal analysis. Results of this initial simulation was used to analyze current and systems heat flows, which served as the basis for our recommendations to improve existing heat dissipation techniques such as the elimination of heat pools, and the enhancement of heat sink and ventilation fan designs. The recommendations were then used for the design of an improved heat dissipation method that increases per unit volume CPU heat dissipation efficiency by three times the original, while maintaining the same internal systems maximum temperature.

    Making comparisons between the initial laptop internal systems analysis and analysis using recommended heat dissipation techniques, we have arrived at the following conclusions and recommendations:

    1.Considerations were given to the placement and direction

    of the ventilation fans: Recommendations were given to

    placing ventilation fans around high temperature areas in

    the heat sink, and the redesign of existing heat sinks

    with considerations given to fan air flow. Simulation

    comparisons revealed that identical CPU parts had a peak

    temperature decrease of approximately 27°C.

    2.Consideration was given to the aggregation of heat pools

    that result from convection currents above heat sinks:

    Recommendations were given to the design of duct style

    heat sinks, and the use of forced convection within the

    ducts. Simulation comparisons revealed that, depending on

    the number of ducts used, there was a 1.0°C to 3.5 °C

    improvement in internal temperature reduction.

    3.Consideration was given to the reduced ventilation air

    flow speed as a result of the duct placement:

    Recommendations were given to placing the heat sinks

    external to the ducts to allow for heat dissipation using

    natural convection methods. Simulation comparisons

    revealed that there was a 6°C improvement in internal

    temperature reduction.

    4.Considerations were given to the use of copper versus

    duraluminum due to the better thermal conductivity of

    copper (2.5x of duraluminum). Consideration was also

    given to additional assembly requirements of copper.

    Recommendation was given to the use of copper CPU chips

    within the ducts. Simulation analysis revealed that there

    was a 17°C improvement in internal temperature reduction.

    5.Consideration was given to the singular air current flow

    that may result in heavy pressures on the ventilation

    system. Recommendation was given to the use of dual duct

    heat sinks. Simulation comparisons revealed that there

    was a 12.4°C improvement in internal temperature

    reduction.

    目錄: 摘要.......................................................i Abstract...................................................iii 誌謝感言...................................................v 目錄.......................................................vi 表目.......................................................viii 圖目.......................................................ix 符號說明...................................................xi 第一章 緒論................................................1 1-1 前言...............................................1 1-2 研究方向...........................................2 1-3 本文架構...........................................3 第二章 熱對策..............................................4 2-1 熱對策分析.........................................4 2-2 熱對策方向.........................................4 2-3 熱對策分析流程.....................................6 2-4 結語...............................................7 第三章 數值計算方法與理論基礎..............................10 3-1 數值分析概論.......................................10 3-2 微分方程式的離散化.................................11 3-3 交錯式網格系統.....................................13 3-4 SIMPLE的演算程序...................................19 3-5 結構網格分割.......................................20 3-6 APPLE..............................................21 第四章 熱設計的方法與步驟..................................27 4-1 FLOTHERM模擬流程...................................27 4-2 初步分析結果與討論.................................38 4-3 結語...............................................40 第五章 使用熱對策改善設計缺失..............................56 5-1 熱設計缺失之探討...................................56 5-2 改善熱設計之模擬...................................58 5-3 雙導管型散熱片.....................................64 5-4 結語...............................................64 第六章 結論與建議..........................................87 6-1 結論...............................................87 6-2 建議...............................................87 參考文獻...................................................89 表目: 表3-1 各種不同演算法的函...................................22 表4-1 假設硬碟、軟碟與光碟機為等溫元件對收斂時間與模擬結果 的影響.....................................................42 圖目: 圖2-1 筆記型電腦初步散熱設計模擬流程圖....................8 圖2-2 筆記型電腦熱對策散熱設計模擬流程圖..................9 圖3-1 二維交錯式網格系統圖................................23 圖3-2 三維交錯式網格系統圖................................24 圖3-3 棋盤式壓力(checkerboard pressure)示意圖.............25 圖3-4 波形分佈速度場示意圖................................25 圖3-5 對u的控制容積示意圖.................................26 圖3-6 對v的控制容積示意圖.................................26 圖4-1 主系統設定視窗(Project Manager application window)..43 圖4-2 繪圖視窗(Drawing Board).............................43 圖4-3 系統座標示意圖......................................44 圖4-4 FLOTHERM之元件表面對流熱傳示意圖....................45 圖4-5 三維圖像視窗(Visualization Window)..................47 圖4-6 網格分割之先後次序(order)...........................48 圖4-7 使用最小網格數設定所易於發生的網格誤差..............48 圖4-8 筆記型電腦初步分析之系統網格分佈圖..................49 圖4-9 筆記型電腦初步分析之系統溫度分佈圖(整體模擬)........50 圖4-10 筆記型電腦初步分析之鰭片截面速度分佈圖(整體模擬)....51 圖4-11 筆記型電腦初步分析之風扇截面速度分佈圖(整體模擬)....52 圖4-12 考慮風扇-Y軸壁面上流場之系統速度分佈圖(整體模擬)....53 圖4-13 風扇-Y軸壁面上開一長度d的出風口.....................54 圖4-14 d與Tmax的關係圖.....................................55 圖4-15 d與Vmax的關係圖.....................................55 圖5-1 筆記型電腦初步分析之風扇出風口處的速度分佈圖........66 圖5-2 筆記型電腦初步分析之等溫表面圖(60°C以上的高溫度區 域)........................................................67 圖5-3 筆記型電腦初步分析之流速3m/s以上作用的區域範圍圖....68 圖5-4 風扇置於散熱鰭片右方(CPU:35mm×35mm×10mm,20W,暫 設值)......................................................69 圖5-5 初步分析中的散熱鰭片(CPU:35mm×35mm×10mm,20W)....69 圖5-6 風扇置於散熱鰭片右方之速度分佈圖....................70 圖5-7 初步分析中散熱鰭片之速度分佈圖......................71 圖5-8 風扇置於散熱鰭片右方(CPU:25mm×25mm×8mm,24W).....72 圖5-9 單導管型散熱鰭片....................................73 圖5-10 Tmax與導管內增加之散熱片數的關係圖..................74 圖5-11 Vmax與導管內增加之散熱片數的關係圖..................74 圖5-12 單導管型散熱鰭片之速度分佈圖(Internal Fins=6).......75 圖5-13 高速區域的流動方向與導管內增加散熱片數之關係圖......76 圖5-14 單導管型散熱鰭片之壓力分佈圖(Internal Fins=6).......77 圖5-15 單導管型散熱鰭片之溫度分佈圖(Internal Fins=6).......77 圖5-16 將散熱導管的承熱鋁片改用銅片........................78 圖5-17 單導管承熱處截面之溫度分佈圖........................79 圖5-18 考慮散熱鰭片以自然對流的方式進行散熱設計(增設板狀散 熱片)......................................................80 圖5-19 自然對流下系統最高溫度與散熱片間距之關係(t=1mm).....81 圖5-20 自然對流下系統最高溫度與散熱片間距之關係(t=2mm).....81 圖5-21 柱狀形散熱鰭片(square array of pin-fins)............82 圖5-22 最後整體模擬分析....................................83 圖5-23 雙導管型散熱鰭片....................................84 圖5-24 雙導管型散熱片之速度分佈圖(其中將頂蓋隱藏)..........85 圖5-25 最後整體模擬分析(雙導管型散熱片)....................86

    [1] Suhas V. Patankar, 1980, “Numerical Heat Transfer and Fluid Flow”, Hemisphere Publishing Corporation.
    [2] Flomerics,1993, “How to Use FLOTHERM- Lecture Course” ,Flomerics, England.
    [3] Paul G. Tucker, 1997, “ CFD Applied to Electronic Systems : A Review”, IEEE Trans. on Components, Packaging, and Manufacturing Technology—Part A, Vol. 20, No. 4, pp. 518-529.
    [4] B. E. Launder and D. B. Spalding, 1974, “ The numerical computation of turbulent flows”, Comput. Meth. Appl. Mech. Eng., Vol. 3, pp. 269-289.
    [5] S.L.LEE and R.Y.TZONG,1991,”Artificial pressure for pressure-linked equation”, International journal of heat and mass transfer ,Vol.35,No.10,pp.2705-2716,1992.
    [6] Frank M. White, 1991, “Viscous Fluid Flow”, Second Edition, McGRAW-HILL INTERNATIONAL EDITIONS.
    [7] YUNUS A. CENGEL, 1998, “Heat Transfer(A Practical Approach)”, International Edition, McGRAW-HILL INTERNATIONAL EDITIONS.
    [8] MICHAEL J. MORAN,HOWARD N.SHAPIRO, 1996, “FUNDAMENTALS OF ENGINEERING THERMODYNAMICS,”THIRD EDITION,John Wiley & Sons,Inc.
    [9] Flomerics, “FLOTHERM version 2.2- Lectures Notes” ,Flomerics, England.
    [10] Flomerics, “FLOTHERM version 2.2-- Tutorials” ,Flomerics, England.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE