簡易檢索 / 詳目顯示

研究生: 柯宇駿
Ko, Yu-Chun
論文名稱: 氣相鍺於砷化鎵之擴散模式分析
Diffusion Analysis of Vapor-Phase Ge in GaAs
指導教授: 邱博文
Chiu, Po-Wen
口試委員: 吳孟奇
Wu, Meng-Chyi
張茂男
Chang, Mao-Nan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 76
中文關鍵詞: 雜質致失序半導體雷射元件量子井混合鍺擴散砷化鎵
外文關鍵詞: Impurity-induced layer disordering, Semiconductor laser devices, Quantum-well intermixing, Ge diffusion, GaAs
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在分析氣相鍺於砷化鎵基板內的擴散行為模式,並期望將其應用於雜質致失序以達成利用量子井混合技術製作高功率半導體雷射元件中之非吸收鏡面,藉此改善元件在高輸出功率下的過熱現象。
    文中利用封管技術達成鍺擴散所需的真空環境,並使用三種鍺擴散源來進行鍺擴散實驗,分別是不同面積,事先將5N-GeAs粉末沉積在半絕緣砷化鎵基板上的鍺前驅物基板,以及直接使用GeAs粉末作為鍺來源,並在擴散過程中加入額外的砷以增加擴散速率,試片將會在一系列的溫度與時間下退火,再觀察擴散圖形。
    SEM分析結果得知三種鍺擴散源皆成功在p型砷化鎵基板內擴散,並遵守著特定的擴散模式,文中將更進一步透過Fick's law所推導的各種關係式來計算擴散係數與活化能。最後SIMS的量測分析結果也確認了擴散圖形即為鍺原子成功擴散所造成,並透過深度與原子分佈等資訊展現了相當良好的結果。


    In this study, we analyze diffusion models of vapor-phase Ge in GaAs and apply it to impurity induced layer disordering (IILD). Quantum well intermixing (QWI) will be achieved to fabricate non-absorbing mirrors (NAMs) for the purpose of ameliorating catastrophic optical damage (COD) of high power semiconductor laser devices.
    We employ ampoule sealing technique to keep environment under high vacuum. Three different kinds of Ge source are used to conduct Ge diffusion experiment, including two different areas of precursor, which are GeAs-deposited S.I.-GaAs substrates, and GeAs powder. Samples will be annealed at different times and temperatures. Excessive As4 will be added to increase diffusion rate. After Annealing, samples will be analyzed by SEM and SIMS and diffusion depth will be found out.
    SEM images showed that all Ge sources diffused successfully in p-type GaAs substrates and followed specific models. In addition, diffusion coefficient and activation energy were calculated by utilizing relationship derived from Fick’s law of diffusion. Finally, SIMS profiles also indicated that diffused region shown in SEM images were actually caused by diffused Ge atoms and therefore SIMS profiles provided a lot of useful information.

    Abstract............................................................ I 論文摘要........................................................... III 目錄................................................................ VI 第一章 序論......................................................... 1 1.1 半導體雷射的歷史發展. . . . . . . . . . . . . . . . . . . . . . . 1 1.2 災難性光學損傷 (Catastrophic optical damage, COD) . . . . . . . . 2 1.3 雜質致失序. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 論文結構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 第二章 原理與發展.................................................... 9 2.1 III 族原子在 III-V 族分子晶格中的自擴散機制 . . . . . . . . . . . 9 2.2 砷蒸氣壓對自擴散速率的影響 . . . . . . . . . . . . . . . . . . . 9 2.3 雜質濃度對自擴散速率的影響 . . . . . . . . . . . . . . . . . . . 12 2.4 雜質擴散機制 . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.1 矽擴散 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.2 鍺擴散 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5 擴散係數與活化能 . . . . . . . . . . . . . . . . . . . . . . . . 22 第三章 實驗設計與流程............................................... 29 3.1 實驗設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 封管技術 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 製備鍺前驅物 . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4 擴散用試片 . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.5 鍺擴散實驗(以鍺前驅物基板與砷作為擴散源) . . . . . . . . . . . 35 3.6 鍺擴散實驗(以砷化鍺粉末、鎵金屬與砷作為擴散源) . . . . . . . . 37 3.7 實驗分析儀器 . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.7.1 掃描式電子顯微鏡 . . . . . . . . . . . . . . . . . . . . . . . 39 3.7.2 二次離子質譜儀 . . . . . . . . . . . . . . . . . . . . . . . . 40 第四章 實驗結果與討論............................................... 43 4.1 擴散完試片處理. . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 鍺擴散結果分析 . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2.1 以鍺前驅物基板 25 mm2 與砷作為擴散源 . . . . . . . . . . . . . 44 4.2.2 以鍺前驅物基板 50 mm2 與砷作為擴散源 . . . . . . . . . . . . . 49 4.2.3 以砷化鍺粉末、鎵金屬與砷作為擴散源 . . . . . . . . . . . . . . 53 4.3 擴散係數與活化能計算 . . . . . . . . . . . . . . . . . . . . . . 58 4.4 二次離子質譜儀分析鍺擴散後試片原子分佈 . . . . . . . . . . . . . 61 第五章 結論與未來展望............................................... 67 參考文獻............................................................ 69

    [1] A. Einstein, “Zur quantentheorie der strahlung,” Physikalische Zeitschrift, vol. 18, 1917.
    [2] A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev., vol. 112, pp. 1940–1949, Dec 1958.
    [3] T. H. Maiman, “Optical and microwave-optical experiments in ruby,” Phys. Rev. Lett., vol. 4, pp. 564–566, Jun 1960.
    [4] T. H. Maiman, R. H. Hoskins, I. J. D’Haenens, C. K. Asawa, and V. Evtuhov, “Stimulated optical emission in fluorescent solids. ii. spectroscopy and stimulated emission in ruby,” Phys. Rev., vol. 123, pp. 1151–1157, Aug 1961.
    [5] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett., vol. 9, pp. 366–368, Nov 1962.
    [6] N. H. Jr. and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1−xPx) junctions,” Applied Physics Letters, vol. 1, no. 4, pp. 82–83, 1962.
    [7] H. Rupprecht, J. M. Woodall, and G. D. Pettit, “Efficient visible electroluminescence at 300°k from Ga1‐xAlxAs p‐n junctions grown by liquid‐phase epitaxy,” Applied Physics Letters, vol. 11, no. 3, pp. 81–83, 1967.
    [8] I. Hayashi, M. Panish, and P. Foy, “A low-threshold room-temperature injection laser,” IEEE Journal of Quantum Electronics, vol. 5, pp. 211–212, April 1969.
    [9] M. Panish, I. Hayashi, and S. Sumski, “A technique for the preparation of low-threshold room-temperature gaas laser diode structures,” IEEE Journal of Quantum Electronics, vol. 5, pp. 210–211, April 1969.
    [10] I. Hayashi and M. B. Panish, “GaAs-GaxAl1−xAs heterostructure injection lasers which exhibit low thresholds at room temperature,” Journal of Applied Physics, vol. 41, no. 1, pp. 150–163, 1970.
    [11] I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Applied Physics Letters, vol. 17, no. 3, pp. 109–111, 1970.
    [12] E. Kapon and E. Kapon, Semiconductor Lasers. II, Materials and Structures (Optics and photonics). Academic Press, 1999.
    [13] M. Hempel, J. W. Tomm, F. L. Mattina, I. Ratschinski, M. Schade, I. Shorubalko, M. Stiefel, H. S. Leipner, F. M. Kießling, and T. Elsaesser, “Microscopic origins of catastrophic optical damage in diode lasers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, pp. 1500508–1500508, July 2013.
    [14] C. H. Henry, P. M. Petroff, R. A. Logan, and F. R. Merritt, “Catastrophic damage of AlxGa1−xAs double‐heterostructure laser material,” Journal of Applied Physics, vol. 50, no. 5, pp. 3721–3732, 1979.
    [15] M. Fukuda, M. Okayasu, J. Temmyo, and J. Nakand, “Degradation behavior of 0.98- mu;m strained quantum well InGaAs/AlGaAs lasers under high-power operation,” IEEE Journal of Quantum Electronics, vol. 30, pp. 471–476, Feb 1994.
    [16] W. C. Tang, H. J. Rosen, P. Vettiger, and D. J. Webb, “Evidence for currentdensity‐induced heating of algaas single‐quantum‐well laser facets,” Applied Physics Letters, vol. 59, no. 9, pp. 1005–1007, 1991.
    [17] M. Ziegler, V. Talalaev, J. W. Tomm, T. Elsaesser, P. Ressel, B. Sumpf, and G. Erbert, “Surface recombination and facet heating in high-power diode lasers,” Applied Physics Letters, vol. 92, no. 20, p. 203506, 2008.
    [18] M. Ziegler, J. W. Tomm, D. Reeber, T. Elsaesser, U. Zeimer, H. E. Larsen, P. M. Petersen, and P. E. Andersen, “Catastrophic optical mirror damage in diode lasers monitored during single-pulse operation,” Applied Physics Letters, vol. 94, no. 19, p. 191101, 2009.
    [19] Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica, vol. 34, no. 1, pp. 149 – 154, 1967.
    [20] S. M. Sze and K. K. Ng, Physics of semiconductor devices. John wiley & sons, 2006.
    [21] M. Bou Sanayeh, P. Brick, W. Schmid, B. Mayer, M. Müller, M. Reufer, K. Streubel, M. Ziegler, J. W. Tomm, and G. Bacher, “The physics of catastrophic optical damage in high-power algainp laser diodes,” Proc. SPIE, vol. 6997, pp. 699703–699703–12, 2008.
    [22] H. Imai, M. Morimoto, H. Sudo, T. Fujiwara, and M. Takusagawa, “Catastrophic degradation of GaAlAs dh laser diodes,” Applied Physics Letters, vol. 33, no. 12, pp. 1011–1013, 1978.
    [23] L. L. Chang and A. Koma, “Interdiffusion between GaAs and AlAs,” Applied Physics Letters, vol. 29, no. 3, pp. 138–141, 1976.
    [24] Y. Suzuki, Y. Horikoshi, M. Kobayashi, and H. Okamoto, “Fabrication of GaAlAs ’window-stripe’ multi-quantum-well heterostructure lasers utilising Zn diffusion-induced alloying,” Electronics Letters, vol. 20, pp. 383–384, April 1984.
    [25] J. K. Lee, K. H. Park, D. H. Jang, H. S. Cho, C. S. Park, K. E. Pyun, and J. Jeong, “Improvement of catastrophic optical damage (cod) level for highpower 0.98- m gainas-gainp laser,” IEEE Photonics Technology Letters, vol. 10, pp. 1226–1228, Sept 1998.
    [26] K. Hiramoto, M. Sagawa, T. Kikawa, and S. Tsuji, “High-power and highly reliable operation of al-free InGaAs-InGaAsP 0.98- m lasers with a window structure fabricated by Si ion implantation,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, pp. 817–821, May 1999.
    [27] W. D. Laidig, N. H. Jr., M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an alas‐gaas superlattice by impurity diffusion,” Applied Physics Letters, vol. 38, no. 10, pp. 776–778, 1981.
    [28] Z. Kawazu, Y. Tashiro, A. Shima, D. Suzuki, H. Nishiguchi, T. Yagi, and E. Omura, “Over 200-mw operation of single-lateral mode 780-nm laser diodes with window-mirror structure,” IEEE Journal of Selected Topics in
    Quantum Electronics, vol. 7, pp. 184–187, Mar 2001.
    [29] D. G. Deppe, G. S. Jackson, N. H. Jr., R. D. Burnham, and R. L. Thornton, “Coupled stripe AlxGa1−xAs‐GaAs quantum well lasers defined by impurity‐induced (Si) layer disordering,” Applied Physics Letters, vol. 50, no. 11, pp. 632–634, 1987.
    [30] J. J. Coleman, P. D. Dapkus, C. G. Kirkpatrick, M. D. Camras, and N. H. Jr., “Disorder of an alas‐gaas superlattice by silicon implantation,” Applied Physics Letters, vol. 40, no. 10, pp. 904–906, 1982.
    [31] D. G. Deppe and N. H. Jr., “Atom diffusion and impurity‐induced layer disordering in quantum well iii‐v semiconductor heterostructures,” Journal of Applied Physics, vol. 64, no. 12, pp. R93–R113, 1988.
    [32] J. R. Manning, “Diffusion kinetics for atoms in crystals,” American Journal of Physics, vol. 36, no. 10, pp. 922–923, 1968.
    [33] A. Furuya, O. Wada, A. Takamori, and H. Hashimoto, “Arsenic pressure dependence of interdiffusion of algaas/ gaas interface in quantum well,” Japanese Journal of Applied Physics, vol. 26, no. 6A, p. L926, 1987.
    [34] T. Y. Tan, U. Gösele, and B. P. R. Marioton, “Mechanisms of doping-enhanced superlattice disordering and of gallium self-diffusion in gaas,” MRS Proceedings, vol. 104, 1987.
    [35] T. Tan and U. Gösele, “Diffusion mechanisms and superlattice disordering in GaAs,” Materials Science and Engineering: B, vol. 1, no. 1, pp. 47 – 65, 1988.
    [36] K. J. Beernink, R. L. Thornton, G. B. Anderson, and M. A. Emanuel, “Si diffusion and intermixing in AlGaAs/GaAs structures using buried impurity sources,” Applied Physics Letters, vol. 66, no. 19, pp. 2522–2524, 1995.
    [37] P. Mei, H. W. Yoon, T. Venkatesan, S. A. Schwarz, and J. P. Harbison, “Kinetics of silicon‐induced mixing of AlAs‐GaAs superlattices,” Applied Physics Letters, vol. 50, no. 25, pp. 1823–1825, 1987.
    [38] S. Lee, G. Braunstein, P. Fellinger, K. B. Kahen, and G. Rajeswaran, “Disordering of Si‐implanted GaAs‐AlGaAs superlattices by rapid thermal annealing,” Applied Physics Letters, vol. 53, no. 25, pp. 2531–2533, 1988.
    [39] D. G. Deppe, N. H. Jr., W. E. Plano, V. M. Robbins, J. M. Dallesasse, K. C. Hsieh, and J. E. Baker, “Impurity diffusion and layer interdiffusion in AlxGa1−xAs‐GaAs heterostructures,” Journal of Applied Physics, vol. 64, no. 4, pp. 1838–1844, 1988.
    [40] D. G. Deppe, N. H. Jr., K. C. Hsieh, P. Gavrilovic, W. Stutius, and J. Williams, “Layer interdiffusion in Se‐doped AlxGa1−xAs‐GaAs superlattices,” Applied Physics Letters, vol. 51, no. 8, pp. 581–583, 1987.
    [41] R. W. Kaliski, D. W. Nam, D. G. Deppe, N. H. Jr., K. C. Hsieh, and R. D. Burnham, “Thermal annealing and photoluminescence measurements on AlxGa1−xAs‐GaAs quantum‐well heterostructures with Se and Mg sheet doping,” Journal of Applied Physics, vol. 62, no. 3, pp. 998–1005, 1987.
    [42] D. G. Deppe, N. H. Jr., F. A. Kish, and J. E. Baker, “Background doping dependence of silicon diffusion in p‐type GaAs,” Applied Physics Letters, vol. 50, no. 15, pp. 998–1000, 1987.
    [43] D. G. Deppe, N. H. Jr., and J. E. Baker, “Sensitivity of Si diffusion in GaAs to column iv and vi donor species,” Applied Physics Letters, vol. 52, no. 2, pp. 129–131, 1988.
    [44] L. J. Guido, W. E. Plano, D. W. Nam, N. Holonyak, J. E. Baker, R. D. Burnham, and P. Gavrilovic, “Effect of surface encapsulation and As4 overpressure on Si diffusion and impurity-induced layer disordering in GaAs, AlxGa1-xAs, and AlxGa1-xAs-GaAs quantum well heterostructures,” Journal of Electronic Materials, vol. 17, no. 1, pp. 53–56, 1988.
    [45] E. Omura, X. S. Wu, G. A. Vawter, E. L. Hu, L. A. Coldren, and J. L. Merz, “Silicon diffusion into AlxGa1−xAs (x=0-0.4) from a sputtered silicon film,” Applied Physics Letters, vol. 50, no. 5, pp. 265–266, 1987.
    [46] C. W. Farley, T. S. Kim, S. D. Lester, B. G. Streetman, and J. M. Anthony, “Complex compensation of Ge pulse‐diffused into GaAs,” Journal of The Electrochemical Society, vol. 134, no. 11, pp. 2888–2892, 1987.
    [47] S. D. Lester, C. W. Farley, T. S. Kim, B. G. Streetman, and J. M. Anthony, “Pulse diffusion of ge into gaas,” Applied Physics Letters, vol. 48, no. 16, pp. 1063–1065, 1986.
    [48] K. V. Vaidyanathan, M. J. Helix, D. J. Wolford, B. G. Streetman, R. J. Blattner, and C. A. Evans, “Study of encapsulants for annealing GaAs,” Journal of The Electrochemical Society, vol. 124, no. 11, pp. 1781–1784, 1977.
    [49] D. G. Deppe, W. E. Plano, J. M. Dallesasse, D. C. Hall, L. J. Guido, and N. H. Jr., “Buried heterostructure AlxGa1−xAs‐GaAs quantum well lasers by Ge diffusion from the vapor,” Applied Physics Letters, vol. 52, no. 10, pp. 825–827, 1988.
    [50] J. Crank, The mathematics of diffusion. Oxford university press, 1979.
    [51] R. E. Honig and D. A. Kramer, “Vapor-pressure data for the solid and liquid elements,” 1970.
    [52] R. W. Olesinski and G. J. Abbaschian, “The As−Ge (arsenic-germanium) system,” Bulletin of Alloy Phase Diagrams, vol. 6, no. 3, pp. 250–254, 1985.
    [53] J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, and P. Echlin, Scanning Electron Microscopy and X-ray Microanalysis. Springer Us, 2012.
    [54] D. O'Connor, B. Sexton, and R. Smart, Surface Analysis Methods in Materials Science. Springer, 2003.

    QR CODE