簡易檢索 / 詳目顯示

研究生: 陳葆光
論文名稱: 天然磷脂質配方作為微脂粒基因載體與體外細胞轉染研究
The Study of Natural Phospholipid as Helper Lipid in Liposome Based Gene Delivery
指導教授: 朱一民
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 56
中文關鍵詞: 微脂粒基因治療基因傳遞轉染
外文關鍵詞: liposome, gene therapy, gene delivery, transfection
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的在於探討天然中性磷脂質作為微脂粒基因載體之成份時,對正電荷微脂粒及微脂粒-DNA複合物(lipoplex)之轉染效率的影響,以評估其是否增進傳統正電荷微脂粒的功效。實驗中將使用不同比例之DC-Chol, DOPE, EPC, HSPC製備成正電荷微脂粒。並且將質體DNA(pEGFP-N1)與不同比例之正電荷微脂粒混合形成微脂粒-DNA複合物,供體外細胞轉染實驗使用,其中以中國倉鼠卵巢細胞(CHO-K1)作為宿主。轉染效率是以流式細胞儀測定轉染後螢光細胞數與細胞總數的比例。實驗結果發現僅以DOPE為中性脂質的載體具有最好的轉染效果,高出商品化轉染試劑約4%,但只有約30%的細胞存活率。加入天然磷脂質的正電荷微脂粒雖然無法明顯增進細胞轉染的效率,但含有EPC的載體還是保有10%以上的轉染效率,且增加了細胞存活率至50%以上。而含有HSPC的載體對細胞的傷害最小,約87%以上的細胞存活率,但僅有不到10%的轉染效率。由本實驗可以得知,加入天然磷脂質對於降低細胞毒性有顯著的效果,且透過配方比例的調整,我們可以在轉染效率與細胞存活率之間取得最適用的基因載體。


    摘 要 Ⅰ 目 錄 Ⅱ 圖 目 錄 Ⅵ 表 目 錄 Ⅶ 第一章、 文獻回顧 1 1.1. 背景 1 1.2. 微脂粒簡介 2 1.2.1. 微脂粒的構造 2 1.2.2. 微脂粒與細胞作用的方式 3 1.2.3. 正電荷微脂粒 5 1.2.4. 轉染的作用機制13 7 1.2.5. Phosphatidylethanolamine(PE) Liposomes 9 1.2.6. 正電荷微脂粒遭遇的瓶脛 12 1.3. 細胞存活率測定(MTT assay) 12 1.4. 流式細胞儀原理 14 1.4.1. 流體學系統(fluidics) 14 1.4.2. 光學及電子系統(optics and electronics) 15 第二章、 研究動機與目的 17 第三章、 實驗材料與方法 18 3.1. DC-Chol之合成 18 3.1.1. 藥品與試劑 18 3.1.2. 儀器設備與耗材 18 3.1.3. 實驗步驟 18 3.2. 微脂粒之製備 19 3.2.1. 藥品與試劑 19 3.2.2. 儀器設備與耗材 20 3.2.3. 各式微脂粒懸浮液之成份比例 20 3.2.4. 實驗步驟 21 3.3. 質體DNA之抽取 21 3.3.1. 藥品與試劑 21 3.3.2. 儀器設備與耗材 22 3.3.3. 質體DNA 22 3.3.4. 實驗步驟 22 3.4. Lipoplex之製備 23 3.4.1. 藥品與試劑 23 3.4.2. 實驗步驟 23 3.5. 細胞轉染實驗 24 3.5.1. 藥品與試劑 24 3.5.2. 儀器設備與耗材 24 3.5.3. 細胞株 25 3.5.4. 實驗步驟 25 3.6. MTT assay 26 3.6.1. 藥品與試劑 26 3.6.2. 儀器設備與耗材 26 3.6.3. 實驗步驟 26 3.7. 統計分析 27 3.7.1. 細胞轉染效率計算 27 3.7.2. 細胞存活性計算 27 第四章、 結果與討論 28 4.1. DC-Chol合成 28 4.1.1. 1H-NMR核磁共振儀結果 28 4.1.2. GC-Mass氣相層析質譜儀結果 28 4.1.3. 熔點測定 30 4.2. Lipoplex之zeta-potential結果 30 4.3. 細胞轉染實驗結果 38 4.4. Lipoplex細胞毒性 42 4.5. 討論 49 第五章、 未來展望 51 第六章、 參考文獻 52 圖 目 錄 圖 1.2 1磷脂質分子 3 圖 1.2 2微脂粒脂雙層結構 3 圖 1.2 3微脂粒與細胞作用方式 5 圖 1.2 4 DOTMA分子結構圖 6 圖 1.2 5 DC-Chol分子結構圖 7 圖 1.2 6轉染的作用機制 8 圖 1.2 7 DOPE分子結構圖 9 圖 1.2 8微脂粒自我聚集顯示之相態圖 10 圖 1.2 9脂質分子形狀與構成相態的關係 11 圖 1.3 2 MTT測定細胞存活率示意圖 13 圖 1.4 1流式細胞儀的基本設計 16 圖 1.4 2典型流式細胞儀的光學偵測系統 16 圖 4.1 1 DC-Chol 1H-NMR圖譜 29 圖 4.1 2 DC-Chol質譜儀結果 29 圖 4.1 3 利用DSC測定DC-Chol之溶點結果 30 圖 4.2 1 正電荷微脂粒與DNA混合形成lipoplex 31 圖 4.2 2 DD55在不同Charge ratio之zeta-potentia值 32 圖 4.2 3 DDE532在不同Charge ratio之zeta-potentia值 33 圖 4.2 4 DDH532在不同Charge ratio之zeta-potentia值 34 圖 4.2 5 DDE541在不同Charge ratio之zeta-potentia值 35 圖 4.2 6 DDH541在不同Charge ratio之zeta-potentia值 36 圖 4.3 1 DD55在不同Charge ratio之轉染效率結果 38 圖 4.3 2 DDE532在不同Charge ratio之轉染效率結果 39 圖 4.3 3 DDH532在不同Charge ratio之轉染效率結果 40 圖 4.3 4 DDH541在不同Charge ratio之轉染效率結果 41 圖 4.3 5 EPC與HSPC分子結構 42 圖 4.4 1 DD55在不同Charge ratio之細胞存活率結果 44 圖 4.4 2 DDE532在不同Charge ratio之細胞存活率結果 45 圖 4.4 3 DDH532在不同Charge ratio之細胞存活率結果 46 圖 4.4 4 DDE541在不同Charge ratio之細胞存活率結果 47 圖 4.4 5 DDH541在不同Charge ratio之細胞存活率結果 48 表 目 錄 表 3.2.3 1各式微脂粒懸浮液之成份比例 20 表 3.3.4 1各不同Charge ratio之DC-Chol╱DNA比例 23

    1. R. R. C. New, “Liposomes: a practical approach” Oxford University Press, p23-24, 1990

    2. R. R. C. New, “Liposomes: a practical approach” Oxford University Press, p221-225, 1990

    3. P. L. Felgner, T. R. Gadek, M. Holm, R. Roman, H. W. Chan, M. Wenz, J. P. Northrop, G. M. Ringold, M. Danielson, “Lipofection - A highly efficient lipid mediated DNA Transfection Procedure” Proc. Natl. Acad. Sci. USA 84, 7413-7417, 1987

    4. A. Hirko, F. Tang, J. A. Hughes, “Cationic Lipid Vectors for Plasmid DNA Delivery” Curr. Med. Chem. 10, 1185-1193, 2003

    5. H. Farhood, N. Serbina, L. Huang, “The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer” Biochem. Biophys. Acta 1235, 289-295, 1995

    6. S.W. Hui, M. Langner, Y.L. Zhao, P. Ross, E. Hurley, K. Chan, “The role of Helper Lipids in Cationic Liposome-Mediated Gene Transfer” Biophys. J. 71, 590-599, 1996

    7. Y. Zhang, W. Garzon-Rodriguez, M.C. Manning, T. J. Anchordoquy, “The use of fluorescence resonance energy transfer to monitor dynamic changes of lipid-DNA interaction during lipoplex formation” Biochem. Biophys. Acta 1614, 182-192, 2003

    8. D.C. Litzinger, L. Huang, “Phosphatidylethanolamine liposomes: drug delivery, gene transfer and immunodiagnostic applications” Biochem. Biophys. Acta 1113, 201-227, 1992

    9. Dan D. Lasic, “Novel applications of liposomes” Trends Biotechnol. 16, 307-321, 1998

    10. N. Oku, Y. Yamazki, M. Matsuura, M. Sugiyama, M. Hasegawa, M. Nango, “A novel non-viral gene transfer system, polycation liposomes” Adv. Drug. Deliver. Rev. 52, 209-218, 2001

    11. X. Gao, L. Huang, “A Novel Cationic Liposome Reagent for Efficient Transfection of Mammalian Cells” Biochem. Biophys. Res. Commun. 179(1), 280-285, 1991

    12. http://www-ermm.cbcu.cam.ac.uk/03006574h.htm

    13. S. Janoff, “Liposomes: Rational Design” Marcel Dekker, Inc. Press, New York, p103-107, 1999

    14. J. Haensler, F. C. Szoka, “Polyamidoamine Cascade Polymers Mediate Efficient Transfection of Cells in Culture” Bioconjug. Chem. 4, 372-379, 1993

    15. N.S. Yew, D.M. Wysokenski, K.X. Wang, R.J. Ziegler, J. Marshall, D. McNeilly, M. Cherry, W. Osburn, S.H. Cheng “Optimization of plasmid vectors for high-level expression in lung epithelial cells” Hum. Gene Ther. 8, 575-584, 1997

    16. N.S. Templeton, D.D. Lasic, P.M. Frederik, H.H. Strey, D.D. Roberts, G.N. Pavlakis, “Improved DNA: liposome complexes for increased systemic delivery and gene expression” Nat. Biotechnol. 15, 647-652, 1997

    17. N.S. Templeton, “Liposomal Delivery of Nucleic Acid In Vivo” DNA Cell Biol. 21(12), 857-867, 2002

    18. M. R. Almofti, H. Harashima, Y. Shinohara, A. Almofti, Y. Baba, H. Kiwada, “Cationic liposome-mediated gene delivery: Biophysical study and mechanism of internalization” Arch. Biochem. Biophys. 410, 246-253, 2003

    19. D. Liu, T. Ren, X. Gao, “Cationic Transfection Lipids” Curr. Med. Chem. 10, 1307-1315, 2003

    20. Y. Liu, D. Liggitt, W. Zhong, G. Tu, K. Gaensler, R. Debs, “Cationic Liposome-Mediated Intravenous Gene Delivery” J. Biol. Chem. 270(42), 24864-24870, 1995

    21. Crispin R. Dass, “Cytotoxicity issues pertinent to lipoplex-mediated gene therapy in-vivo” J. Pharm. Pharmacol. 54, 593-601, 2002

    22. E. M. Lee, S. H. Hong, Y. J. Lee, Y. H. Kang, K. C. Choi, S. H. Choi, I. H. Kim, S. J. Lim, “Liposome-complexed adenoviral gene transfer in cancer cells expressing various levels of coxsackievirus and adenovirus receptor” J. Cancer Res. Clin. 130, 169-177, 2004

    23. C. P. Leamon, S. R. Cooper, G. E. Hardee, “Folate-Liposome-Mediated Antisense Oligodeoxynucleotide Targeting to Cancer Cells: Evaluation in Vitro and in Vivo” Bioconjug. Chem. 14, 738-747, 2003

    24. J. M. Saul, A. Annapragada, J. V. Natarajan, R. V. Bellamkonda, “Controlled targeting of liposomal doxorubicin via the folate receptor in vitro” J. Control Release 92, 49-67, 2003

    25. Y. Hattori, Y. Maitani, “Enhanced in vitro DNA transfection efficiency by novel folate-linked nanoparticles in human prostate cancer and oral cancer” J. Control Release 97, 173-183, 2004

    26. Y. Zhang, T. J. Anchordoquy, “The role of lipid charge density in the serum stability of cationic lipid/DNA complexes”, Biochem. Biophys. Acta 1663 143-157, 2004

    27. L. Wang, RC MacDonald, “New strategy for transfection: mixtures of medium-chain and long-chain cationic lipids synergistically enhance transfection” Gene Ther. 11, 1358-1362, 2004

    28. R. I. Zhdanov, O. V. Podobed, V. V. Vlassov, “Cationic lipid-DNA complexes – lipoplexes for gene transfer and therapy” Bioelectrochemistry 58 53-64, 2002

    29. R. Zeisig, A. Ress, I. Fichtner, W. Walther, “Lipoplexes with alkylphospholipid as new helper lipid for efficient in vitro and in vivo gene transfer in tumor therapy” Cancer Gene Ther. 10, 302-311, 2003

    30. I.S. Zuhorn, V. Oberle, W.H. Visser, J.B.F.N. Engberts, U. Bakowsky, E. Polushkin, D. Hoekstra, “Phase Behavior of Cationic Amphiphiles and Their Mixtures with Helper Lipid Influences Lipoplex Shape, DNA Translocation, and Trasfection Efficiency” Biophys.l J. 83, 2096-2108, 2002

    31. F. Sakurai, T. Nishioka, H. Saito, T. Baba, A. Okuda, O. Matsumoto, T. Taga, F. Yamashita, Y. Takakura, M. Hashida, “Interaction between DNA-cationic liposome complexes and erythrocytes is an important factor in systemic gene transfer via the intravenous route in mice: the role of the neutral helper lipid” Gene Ther. 8, 677-686, 2001

    32. K. Kostarelos, D. Emfietzoglou, A. Papakostas, W.H. Yang, A. Ballangrud, G. Sgouros, “Binding and interstitial penetration of liposomes within avascular tumor spheroids” Int. J. Cancer 112, 713-721, 2004

    33. T. Montier, P. Delepine, C. Pichon, C. Ferec, D.J. Porteous, P. Midoux, “Non-viral vectors in cystic fibrosis gene therapy: progress and challenges” Trends Biotechnol. 22(11) 586-592, 2004

    34. B. Ruozi, F. Forni, R. Battini, M. A. Vandelli, “Cationic Liposomes for Gene Transfer” J. Drug Target. 11, 407-414, 2003

    35. C. R. Dass, “Lipoplex-mediated delivery of nucleic acids: factors affecting in vivo transfection” J. Mol. Med-JMM 82, 579-591, 2004

    36. R.I. Zhdanov, O.V. Podobed, V.V. Vlassov, “Cationic lipid-DNA complexes-lipoplexes-for gene transfer and therapy” Bioelectrochemistry 58, 53-64, 2002

    37. O. Boussif, F. Lezouale’h, M. A. Zanta, M.D. Mergny, D. Scherman, B. Demeneix, J.P. Behr, “A versatile vector for gene and oligonucleotide transfer in to cells in culture and in vivo: polyethyleneimine” Proc. Natl. Acad. Sci. USA 92(16), 7297-7301, 1995
    38. 劉鎧維,膽固醇衍生物作為正電荷微脂粒組成之探討及改進基因載體微脂粒安定性之研究,國立台灣大學藥學研究所碩士論文(

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE