簡易檢索 / 詳目顯示

研究生: 楊少瑄
Yang, Shao-Hsuan
論文名稱: 高分子/量子點混成材料之研究
Study of Hybrid Polymer/Quantum Dots Materials
指導教授: 陳學仕
Chen, Hsueh-Shih
口試委員: 郭正亮
Kuo, Jheng-Liang
梁晃千
Liang, Huang-Chien
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 76
中文關鍵詞: 量子點微膠囊光穩定性熱穩定性量產
外文關鍵詞: quantum dots, microcapsules, photo stability, thermal stability, mass production
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究致力於探討量子點微囊之性質與製程改善,藉由將量子點(鎘硒合金─硫化鋅)包覆在聚乙烯顆粒中以合成量子點微囊達到保護量子點的作用,該量子點微囊不僅繼承了量子點優異的光致發光特性,例如窄半高寬和高光轉換效率,還可以在量子點發光二極體和量子點薄膜等不同的應用中有效地提高熱穩定性和光穩定性。本研究也將量子點微囊製程中的每個實驗參數進行優化以觀察不同的量子點微囊表面形貌與穩定性、光轉換效率之間的相關聯性。此外,為了能夠穩定且大量地生產品質穩定均一的量子點微囊,本團隊開發了一新製程(蠕動泵浦製程)取代了原先的量子點微囊標準製程。在蠕動泵浦製程中,量子點微囊可以在更均勻的冷卻環境中成型且可以同時引進多流道的設計達到量產目的,由於此項改進,蠕動泵浦製程提供了標準製程無法提供的量子點微囊量產可行性,基於此量產可行性,量子點微囊未來非常具有商業化的潛力。


    In this study, we encapsulated quantum dots (QDs) in polymer granules to produce QD microcapsules which inherit excellent photoluminescence (PL) properties of QDs such as narrow full width at half maximum (FWHM) and high light conversion efficiency (LCE). QD microcapsules can efficiently enhance the thermal and photo stability of QDs in different applications such as QD LED (Light-emitting diode) and QD film. Each experimental parameter for QD microcapsules is optimized to observe the correlation between the morphology of QD microcapsules and the stability enhancement. Additionally, a new quench process (automatic process) which replace the encapsulation process for QD microcapsules mass production is developed. In the automatic process, QD microcapsules can form in a much more uniform cooling rate. Due to this improvement, the automatic process provides a feasibility of mass production which the encapsulation process cannot provide. With feasibility of mass production for QD microcapsules, QD microcapsules are very potential for commercialization.

    Chapter 1 Introduction 7 Chapter 2 Literature Review 9 2.1 Introduction to quantum dots 9 2.1.1 Quantum confinement effect in quantum dots 9 2.1.2 Radiative and non-radiative recombination of excitons in QD 12 2.2 Stability of QDs 14 2.2.1 Thermal stability of QDs 14 2.2.2 Photo stability of QDs 16 2.3 Encapsulation of QD 18 2.3.1 Inorganic encapsulation method 18 2.3.2 Organic encapsulation method 21 Chapter 3 Experimental 24 3.1 Chemicals 24 3.2 Synthesis of QD microcapsules by encapsulation process 24 3.3 Preparation of QD film and QD microcapsule film 25 3.4 Preparation of QD LED and QD microcapsule LED 26 3.5 Synthesis of QD microcapsules by automatic process 27 3.6 Oxidation process for QD microcapsules 28 3.7 QD microcapsules conformal coating by Langmuir Blodgett layer process 29 3.8 Instruments 31 3.8.1 Optical characterization 31 3.8.2 Scanning Electron Microscope 33 3.8.3 Static contact angle meter 34 Chapter 4 Results and Discussion 35 4.1 Composition and structure characterization of QD microcapsules 35 4.1.1 The encapsulation of QD microcapsules 35 4.2 Influence of different experimental parameters on QD microcapsules 39 4.2.1 Influence of QD concentration 39 4.2.2 Influence of cooling rate in quench process 44 4.2.3 Influence of stirring issue in quench process 48 4.3 Mass production of QD microcapsules 51 4.3.1 Non-uniform quench rate problem in encapsulation process 51 4.3.2 Improvement of non-uniform quench rate problem 53 4.3.3 Influence of pipe size in automatic process 55 4.3.4 Influence of flow rate in automatic process 57 4.3.5 Issue of massive reactant in automatic process 59 4.3.6 QD microcapsules manufactured by automatic process 60 4.3.7 QD microcapsules with different QD concentration manufactured by automatic process 64 4.4 Application of QD microcapsules 68 4.4.1 Application: QD microcapsules WLED 68 4.4.2 Application: QD microcapsules conformal coating by Langmuir Blodgett layer process 69 Chapter 5 Conclusions 72 References 73

    1 C. B. Murray, D. J. Norris and M. G. Bawendi, J. Am. Chem. Soc., 1993, 115, 8706-8715.
    2 C. B. Murray, C. R. Kagan and M. G. Bawendi, Annu. Rev. Mater. Sci., 2000, 30, 545-610.
    3 V. I. Klimov, A. A. Mikhailovsky, Su Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler & M. G. Bawendi2, Science, 2000, 290, 314-317.
    4 F. Zhang, H. Zhong, C. Chen, X. G. Wu, X. Hu, H. Huang, J. Han, B. Zou and Y. Dong, ACS Nano, 2015, 9, 4533-4542.
    5 S. C. Sullivan, W. Liu, P. Allen and J. S. Steckel, ECS. J. Solid. State. Sc., 2013, 2, R3026-R3030.
    6 Y. Shirasaki, G. J. Supran, M. G. Bawendi and V. Bulović, Nat. Photonics, 2013, 7, 13.
    7 H. Wang , K. S. Lee, J. H. Ryu, C. H. Hong and Y. H. Cho, Nanotechnology, 2008, 19 145202.
    8 M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem., 1996, 100, 468-471.
    9 B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi, J. Phys. Chem. B, 1997, 101, 9463-9475.
    10 X. Peng, M. C. Schlamp, A. V. Kadavanich and A. P. Alivisatos, J. Am. Chem. Soc., 1997, 119, 7019-7029.
    11 Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.S. Han, D. Fukumura, R. K. Jain and M. G. Bawendi, Nat. Mater., 2013, 12, 445-451.
    12 H. Yang and P. H. Holloway, Adv. Funct. Mater., 2004, 14, 152-156.
    13 D. Chen, F. Zhao, H. Qi, M. Rutherford and X. Peng, Chem. Mater., 2010, 22, 1437-1444.
    14 L. Li and P. Reiss, J. Am. Chem. Soc., 2008, 130, 11588-11589.
    15 M. C. Mancini, B. A. Kairdolf, A. M. Smith and S. Nie, J. Am. Chem. Soc., 2008, 130, 10836-10837.
    16 H. Zhao, M. Chaker, N. Wu and D. Ma, J. Mater. Chem., 2011, 21, 8898.
    17 D. C. J. Neo, C. Cheng, S. D. Stranks, S. M. Fairclough, J. S. Kim, A. I. Kirkland, J. M. Smith, H. J. Snaith, H. E. Assender and A. A. R. Watt, Chem. Mater., 2014, 26, 4004-4013.
    18 Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway and L. Qian, Nat. Photonics, 2015, 9, 259-266.
    19 M. Regulacio and M. Han, Acc. Chem. Res., 2010, 45, 621-630.
    20 K. Boldt, N. Kirkwood, G. A. Beane and P. Mulvaney, Chem. Mater., 2013, 25, 4731-4738.
    21 B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J. P. Hermier and B. Dubertret, Nat. Mater., 2008, 7,659-664.
    22 B. N. Pal, Y. Ghosh, S. Brovelli, R. Laocharoensuk, V. I. Klimov, J. A. Hollingsworth and H. Htoon, Nano Lett., 2012, 12, 331-336.
    23 Z. Luo, D. Xu, and S. T. Wu, J. Disp. Technol., 2014, 10, 526-539.
    24 J. Cho, Y. K. Jung, J. K. Lee and H. S. Jung, Langmuir, 2017, 33, 13040-13050.
    25 N. Wang, S. Koh, B. G. Jeong, D. Lee, W. D. Kim, K. Park, M. K. Nam, K. Lee, Y. Kim, B. H. Lee, K. Lee, W. K. Bae and D. C Lee, Nanotechnology, 2017, 28, 185603.
    26 H. Y. Kim, D. E. Yoon, J. Jang, D. Lee, G. M. Choi, J. H. Chang, J. Y. Lee, Doh C. Lee and B. S. Bae, J. Am. Chem. Soc., 2016, 138, 16478-16485.
    27 Y. H. Kim, H. Lee, S. M. Kang and B. S. Bae, ACS Appl Mater Inter, 2019, 11, 22801-22808.
    28 Y. Liu, F. Li, Q. Liu and Z. Xia, Chem. Mater., 2018, 30, 6922-6929.
    29 S. Huang, Z. Li, L. Kong, N. Zhu, A. Shan, and L. Li, J. Am. Chem. Soc., 2016, 138, 5749-5752.
    30 S. Y. Park, H. S. Kim, J. Yoo, S. Kwon, T. J. Shin, K. Kim, S. Jeong and Y. S. Seo, Nanotechnology, 2015, 26, 275602.
    31 Y. H. Song, S. Y. Park, J. S. Yoo, W. K. Park, H. S. Kim, S. H. Choi, S. B. Kwon, B. K. Kang, J. P Kim, H. S. Jung, D. H. Yoon, W. S. Yang and Y. S. Seo, Chem. Eng. J., 2018, 352, 957-963.
    32 Y. Wei, X. Deng, Z. Xie, X. Cai, S. Liang, P. Ma, Z. Hou, Z. Cheng, and J. Lin, Adv. Funct. Mater., 2017, 27, 1703535.
    33 H. Wu, S. Lin, R. Wang, X. You and Y. Chi, Nanoscale, 2019, 11, 5557-5563.
    34 B. Bajorowicz, M. P. Kobylański, A. Gołąbiewska, J. Nadolna, A. Z. Medynska, A. Malankowska, Adv. Colloid. Interfac., 2018, 256, 352-372.
    35 X. Zhong, M. Han, Z. Dong, T. J. White and W. Knoll, J. Am. Chem. Soc., 2003, 125, 8589-8594.
    36 P. Reiss, M. Protiere and L. Li, Small, 2009, 5, 154-168.
    37 I. L. Medintz, H. T. Uyeda, E. R. Goldman and H. Mattoussi, Nat. Mater., 2005, 4, 435-446.
    38 F. Z. Yang, Z. C. Xu, J. J. Wang, F. Zan, C. Q. Dong and J. C. Ren, Luminescence., 2013, 28, 392-400.
    39 T. H. Gfroerer, Encyclopedia of Analytical Chemistry, 2006, DOI: 10.1002/9780470027318.a2510.
    40 Y. Zhao, C. Riemersma, F. Pietra, R. Koole, C. de Mello Donega, A. Meijerink, ACS Nano, 2012, 6, 9058-9067.
    41 H. Moon, C. Lee, W. Lee, J. Kim, and H. Chae, Adv. Mater., 2019, 1804294.
    42 D. Kim, Y. Fu, S. Kim, W. Lee, K.-H. Lee, H. K. Chung, H.-J. Lee, H. Yang, H. Chae, ACS Nano, 2017, 11, 1982.
    43 J.-H. Kim, C.-Y. Han, K.-H. Lee, K.-S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, H. Yang, Chem. Mater. 2015, 27, 197.
    44 P. H. C. Camargo, Y. H. Lee, U. Jeong, Z. Zou, Y. Xia, Langmuir, 2007, 23, 2985.
    45 K. Miszta, D. Dorfs, A. Genovese, M. R. Kim, L. Manna, ACS Nano, 2011, 5, 7176.
    46 K. Pechstedt, T. Whittle, J. Baumberg and T. Melvin, J. Phys. Chem. C, 2010, 114, 12069-12077.
    47 S. T. Malak, Y. J. Yoon, M. J. Smith, C. H. Lin, J. Jung, Z. Lin and V. V. Tsukruk, ACS Photonics, 2017, 4, 1691-1704.
    48 A. A. Bol and A. Meijerink, J. Phys. Chem. B, 2001, 105, 10203-10209.
    49 S. R. Cordero, P. J. Carson, R. A. Estabrook, G. F. Strouse and S. K. Buratt, J. Phys. Chem. B, 2000, 104, 12137-12142.
    50 W. G. J. H. M. v. Sark, P. L. T. M. Frederix, D. J. V. d. Heuvel and H. C. Gerritsen, J. Phys. Chem. B, 2001, 105, 8281-8284.
    51 M. Sykora, A. Y. Koposov, J. A. McGuire, J. M. Pietryga and V. I. Klimov, ACS Nano, 2010, 4, 2021-2034.
    52 C. Carrillo-Carrion, S. Cardenas, B. M. Simonet and M. Valcarcel, Chem. Commun., 2009, 5214- 5226.
    53 M. Jones, J. Nedeljkovic, R. J. Ellingson, A. J. Nozik, G. Rumbles, J. Phys. Chem. B, 2003, 107, 11346.
    54 J. Müller, J. M. Lupton, A. L. Rogach, J. Feldmann, D. V. Talapin, H. Weller, Appl. Phys. Lett., 2004, 85, 381.
    55 S. Dembski, C. Graf, T. Krüger, U. Gbureck, A. Ewald, A. Bock, E. Rühl, Small, 2008, 4, 1516.
    56 K. Pechstedt, T. Whittle, J. Baumberg, T. Melvin, J. Phys. Chem. C, 2010, 114, 12069.
    57 M. G. Bawendi, P. J. Carroll, W. L. Wilson, L. E. Brus. J. Chem. Phys. 1992, 96, 946.
    58 S. C. Huang, C. W. Yeh, G. H. Chen, M. C. Liu and H. S. Chen, ACS Appl. Mater. Inter., 2019, 11, 2516−2525
    59 S. T. Selvan, T. T. Tan and J. Y. Ying, Adv. Mater., 2005, 17, 1620.
    60 T. Zhang, J. L. Stilwell, D. Gerion, L. Ding, O. Elboudwarej, P. A. Cooke, J. W. Gray, A. P. Alivisatos, F. F. Chen, Nano Lett., 2006, 6, 800-808.
    61 S. Jun, J. Lee, E. Jang, ACS Nano, 2013, 7, 1472.
    62 B. Zhao, Y. Yao, M. Gao, K. Sun, J. Zhang, W. Li, Nanoscale 2015, 7, 17231.
    63 F. Zhang, Z. F. Shi, Z. Z. Ma, Y. Li, S. Li, D. Wu, T. T. Xu, X. J. Li, C. X. Shan and G. T. Du, Nanoscale, 2018, 10, 20131-20139.
    64 J. Lim, S. W. Ha, J. K. Lee, Bull. Korean Chem. Soc. 2012, 33, 1067.
    65 R. Ciriminna, M. Sciortino, G. Alonzo, A. D. Schrijver, M. Pagliaro, Chem. Rev. 2011, 111, 765.
    66 L. Pang, Y. Shen, K. Tetz and Y. Fainman, Opt. Express, 2005, 13.1, 44-49.
    67 H. Song and S. Lee, Nanotechnology, 2007, 18.5, 055402.
    68 Y. Zhao and K. Zhu, Chem. Soc. Rev., 2016, 45, 655-689.
    69 Q. Chen,N. Marco, Y. Yang, T. B. Song, C. C. Chen, H. Zhao, Z. Hong, H. Zhou, Y. Yang, Nano Today 2015, 10, 355-396.
    70 H. C. Wang, S. Y. Lin, A. C. Tang, B. P. Singh, H. C. Tong, C. Y. Chen, Y. C. Lee, T. L. Tsai and R. S. Liu, Angew. Chem. Int. Ed., 2016, 55, 7924-7929.

    QR CODE