研究生: |
鄭涵云 Han Yun Cheng |
---|---|
論文名稱: |
光子晶體特性結構製作及其癌症生醫檢測 Fabrication of Photonic Crystal-based Structure and its Biomedical Application for Tumor Marker |
指導教授: |
董瑞安
Ruey-An Doong |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 光子晶體 、腫瘤標記分子 、生物感測器 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
近數十年來,孔洞結構因具有高比表面積、大孔洞密度和可調控孔洞尺寸之優勢而吸引了眾多的目光。這類高規則度的孔洞結構可被應用於許多領域中,諸如過濾材料、分離層析材料、光催化基材、感測器或是光子晶體材料,都展現出亮眼的提升效果,而受到廣泛的重視。其中光子晶體材料可被應用於許多光電元件上。本研究的目的在於製作光子晶體特性結構,搭配流動注入系統,對於腫瘤標記分子進行連續性的檢測。在實驗過程中,首先對於模板濃度,介面活性劑濃度,乾燥溫度,雜合式溶膠凝膠反應和表面修飾流程進行最佳化的調控。最後再針對流動注入系統,進行流速和流量的最佳化調控。
研究發現利用2 wt% (w/w) 濃度聚苯乙烯溶液添加1 CMC Tween 20,於60 □C溫度乾燥下,藉自然重力堆積於玻璃基材上,可形成六方最密堆積的蛋白石結構。Tetraethoxy silicate (TEOS)和Methyltrimethoxy silicate (MTMS)混合液於酸性環境催化下進行溶膠凝膠反應,並填入蛋白時結構中。樣品於550 □C鍛燒移除聚苯乙烯模板後,再浸泡於5 % (3-aminopropyl)trimethoxy silicate (APTS)一個小時,使得孔洞表面接上胺基,而可以和生物分子產生胜肽鍵。將修飾完成的材料置入流動注入系統,依序以流速50 □L/min流入抗體20分鐘,小牛血清蛋白10分鐘,最後流入抗原10分鐘,即可有效作為生物分子感測元件。對於甲型胎兒蛋白(AFP)的偵測範圍可從10到5000 ng/mL,座落於生醫應用範圍,而B型肝炎核心抗體(anti-HBcAg)的檢測則是落於1到100 ng/mL之間,偵測極限分別為100 ng/mL和10 ng/mL。總體而言,此方法具有簡單,方便,便宜和快速的優勢,且由研究結果顯示,此高規則度結構材料具有生醫檢測之應用潛力。
Abstract
Porous materials have attracted much attention over the past decade on account of the advantages of high specific surface area, high volume density and tunable pore sizes. These hierarchically ordered materials can be applied to various fields, such as filters, separation, chromatography, catalytic supports, sensors and photonic band gap structure. The porous structures enhance the efficiency splendidly, and it receives much interest in fabricating the highly ordered porous materials. Among these applications, the photonic crystal structure can be designed for the optical device.
The purpose of this study is to fabricate a well-ordered porous material incorporated with flow injection system for tumor marker detection. The template concentration, surfactant concentration, drying temperature, the hybrid sol-gel reaction and surface modification reaction were investigate and optimized. Results showed that 2 wt% (w/w) polystyrene can be effectively used as a template to fabricate the highly ordered porous structures in the presence of 1 CMC Tween 20. After drying the opal structure at 60 □C, a hexagonally arranged opal structure by natural gravity was formed. The hybrid sol solution prepared with tetraethoxy silicate (TEOS) and methyltrimethosy silicate (MTMS) at pH 2 was then infiltrated into the interstitial voids between polystyrenes by spin-coating. The samples were aged at room temperature and were calcined at 550 □C for the removal of polystyrene. The amino-modified structures derived from soaking with 5 % (3-aminopropyl)trimethoxy silicate (APTS) for 1 hour were incorporated with the flow injection system for biomedical detection. The flow rate of 50 □L/min to 20 min of flow time was used to detect the cancer biomarkers. The detection range of alpha-fetoprotein (AFP) was from 10 to 5000 ng/mL, which locating on the biomedical application range, while the detection of anti-Hepatitis B core antigen (anti-HBcAg) was 1 to 100 ng/mL. The detection limits of AFP and anti-HBcAg are 100 and 10 ng/mL, respectively. In conclusion, the approach developed in this study is simple, convenient, cheap and rapid. Results obtained in this study indicate the high potential application for biomedical detection of cancer biomarker.
References
1. Li, Y. Z.; Kunitake, T.; Fujikawa, S., Efficient fabrication and enhanced photocatalytic activities of 3D-ordered films of Titania hollow spheres. Journal of Physical Chemistry B 2006, 110 (26), 13000-13004.
2. Walker, J. P.; Asher, S. A., Acetylcholinesterase-based organophosphate nerve agent sensing photonic crystal. Analytical Chemistry 2005, 77 (6), 1596-1600.
3. Sharma, A. C.; Jana, T.; Kesavamoorthy, R.; Shi, L. J.; Virji, M. A.; Finegold, D. N.; Asher, S. A., A general photonic crystal sensing motif: Creatinine in bodily fluids. Journal of the American Chemical Society 2004, 126 (9), 2971-2977.
4. Kamenjicki, M.; Lednev, I. K.; Asher, S. A., Photoresponsive azobenzene photonic crystals. Journal of Physical Chemistry B 2004, 108 (34), 12637-12639.
5. Holtz, J. H.; Holtz, J. S. W.; Munro, C. H.; Asher, S. A., Intelligent polymerized crystalline colloidal arrays: Novel chemical sensor materials. Analytical Chemistry 1998, 70 (4), 780-791.
6. Qian, W. P.; Gu, Z. Z.; Fujishima, A.; Sato, O., Three-dimensionally ordered macroporous polymer materials: An approach for biosensor applications. Langmuir 2002, 18 (11), 4526-4529.
7. Skivesen, N.; Tetu, A.; Kristensen, M.; Kjems, J.; Frandsen, L. H.; Borel, P. I., Photonic-crystal waveguide biosensor. Optics Express 2007, 15 (6), 3169-3176.
8. Lee, M.; Fauchet, P. M., Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Optics Express 2007, 15 (8), 4530-4535.
9. Soper, S. A.; Brown, K.; Ellington, A.; Frazier, B.; Garcia-Manero, G.; Gau, V.; Gutman, S. I.; Hayes, D. F.; Korte, B.; Landers, J. L.; Larson, D.; Ligler, F.; Majumdar, A.; Mascini, M.; Nolte, D.; Rosenzweig, Z.; Wang, J.; Wilson, D., Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosensors & Bioelectronics 2006, 21 (10), 1932-1942.
10. Kojima, K.; Hiratsuka, A.; Suzuki, H.; Yano, K.; Ikebukuro, K.; Karube, I., Electrochemical protein chip with arrayed immunosensors with antibodies immobilized in a plasma-polymerized film. Analytical Chemistry 2003, 75 (5), 1116-1122.
11. Tsai, W. C.; Lin, I. C., Development of a piezoelectric immunosensor for the detection of alpha-fetoprotein. Sensors and Actuators B-Chemical 2005, 106 (1), 455-460.
12. Ao, L. M.; Gao, F.; Pan, B. F.; He, R.; Cui, D. X., Fluoroimmunoassay for antigen based on fluorescence quenching signal of gold nanoparticles. Analytical Chemistry 2006, 78 (4), 1104-1106.
13. Mayoral, R.; Requena, J.; Moya, J. S.; Lopez, C.; Cintas, A.; Miguez, H.; Meseguer, F.; Vazquez, L.; Holgado, M.; Blanco, A., 3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure. Advanced Materials 1997, 9 (3), 257-&.
14. Hsiao, S. Y.; Wong, D. S. H.; Lu, S. Y., Evaporation-assisted formation of three-dimensional photonic crystals. Journal of the American Ceramic Society 2005, 88 (4), 974-976.
15. Li, Q. T.; Chen, Y. F.; Dong, P., Improvement of the quality of silica colloidal crystals by controlling drying. Materials Letters 2005, 59 (27), 3521-3524.
16. Ryu, J. H.; Chang, D. S.; Choi, B. G.; Yoon, J. W.; Lim, C. S.; Shim, K. B., Fabrication of Ag nanoparticles-coated macroporous SiO2 structure by using polystyrene spheres. Materials Chemistry and Physics 2007, 101 (2-3), 486-491.
17. Vlasov, Y. A.; Yao, N.; Norris, D. J., Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots. Advanced Materials 1999, 11 (2), 165-169.
18. Cassagneau, T.; Caruso, F., Semiconducting polymer inverse opals prepared by electropolymerization. Advanced Materials 2002, 14 (1), 34-38.
19. Wang, D. Y.; Mohwald, H., Rapid fabrication of binary colloidal crystals by stepwise spin-coating. Advanced Materials 2004, 16 (3), 244-247.
20. Jiang, P.; McFarland, M. J., Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. Journal of the American Chemical Society 2004, 126 (42), 13778-13786.
21. Egen, M.; Voss, R.; Griesebock, B.; Zentel, R.; Romanov, S.; Torres, C. S., Heterostructures of polymer photonic crystal films. Chemistry of Materials 2003, 15 (20), 3786-3792.
22. Zhou, Z. C.; Zhao, X. S., Flow-controlled vertical deposition method for the fabrication of photonic crystals. Langmuir 2004, 20 (4), 1524-1526.
23. Gu, Z. Z.; Fujishima, A.; Sato, O., Fabrication of high-quality opal films with controllable thickness. Chemistry of Materials 2002, 14 (2), 760-765.
24. Goldenberg, L. M.; Wagner, J.; Stumpe, J.; Paulke, B. R.; Gornitz, E., Ordered Arrays of large latex particles organized by vertical deposition. Langmuir 2002, 18 (8), 3319-3323.
25. Ye, Y. H.; LeBlanc, F.; Hache, A.; Truong, V. V., Self-assembling three-dimensional colloidal photonic crystal structure with high crystalline quality. Applied Physics Letters 2001, 78 (1), 52-54.
26. Im, S. H.; Kim, M. H.; Park, O. O., Thickness control of colloidal crystals with a substrate dipped at a tilted angle into a colloidal suspension. Chemistry of Materials 2003, 15 (9), 1797-1802.
27. Jiang, P.; Bertone, J. F.; Hwang, K. S.; Colvin, V. L., Single-crystal colloidal multilayers of controlled thickness. Chemistry of Materials 1999, 11 (8), 2132-2140.
28. Gu, Z. Z.; Horie, R.; Kubo, S.; Yamada, Y.; Fujishima, A.; Sato, O., Fabrication of a metal-coated three-dimensionally ordered macroporous film and its application as a refractive index sensor. Angewandte Chemie-International Edition 2002, 41 (7), 1153-1156.
29. Gu, Z. Z.; Kubo, S.; Qian, W. P.; Einaga, Y.; Tryk, D. A.; Fujishima, A.; Sato, O., Varying the optical stop band of a three-dimensional photonic crystal by refractive index control. Langmuir 2001, 17 (22), 6751-6753.
30. Cheng, Y. H.; Teh, L. K.; Tay, Y. Y.; Park, H. S.; Wong, C. C.; Li, S., Coating process of ZnO thin film on macroporous silica periodic array. Thin Solid Films 2006, 504 (1-2), 41-44.
31. Im, S. H.; Park, O. O., Three-dimensional self-assembly by ice crystallization. Applied Physics Letters 2002, 80 (22), 4133-4135.
32. Li, Y. Z.; Kunitake, T.; Fujikawa, S., Efficient fabrication of large, robust films of 3D-ordered polystyrene latex. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2006, 275 (1-3), 209-217.
33. Park, S. H.; Qin, D.; Xia, Y., Crystallization of mesoscale particles over large areas. Advanced Materials 1998, 10 (13), 1028-1032.
34. Park, S. H.; Xia, Y. N., Fabrication of three-dimensional macroporous membranes with assemblies of microspheres as templates. Chemistry of Materials 1998, 10 (7), 1745-1747.
35. Gates, B.; Qin, D.; Xia, Y. N., Assembly of nanoparticles into opaline structures over large areas. Advanced Materials 1999, 11 (6), 466-469.
36. Park, S. H.; Gates, B.; Xia, Y. N., A three-dimensional photonic crystal operating in the visible region. Advanced Materials 1999, 11 (6), 462-466.
37. Yablonovitch, E., Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters 1987, 58 (20), 2059-2062.
38. John, S., Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Physical Review Letters 1987, 58 (23), 2486-2489.
39. Wong, S.; Kitaev, V.; Ozin, G. A., Colloidal crystal films: Advances in universality and perfection. Journal of the American Chemical Society 2003, 125 (50), 15589-15598.
40. Gu, Z. Z.; Kubo, S.; Fujishima, A.; Sato, O., Infiltration of colloidal crystal with nanoparticles using capillary forces: a simple technique for the fabrication of films with an ordered porous structure. Applied Physics a-Materials Science & Processing 2002, 74 (1), 127-129.
41. Jiang, P.; Hwang, K. S.; Mittleman, D. M.; Bertone, J. F.; Colvin, V. L., Template-directed preparation of macroporous polymers with oriented and crystalline arrays of voids. Journal of the American Chemical Society 1999, 121 (50), 11630-11637.
42. Holtz, J. H.; Asher, S. A., Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 1997, 389 (6653), 829-832.
43. Hench, L. L.; West, J. K., The Sol-Gel Process. Chemical Reviews 1990, 90 (1), 33-72.
44. Tripathi, V. S.; Kandimalla, V. B.; Ju, H. X., Preparation of ormosil and its applications in the immobilizing biomolecules. Sensors and Actuators B-Chemical 2006, 114 (2), 1071-1082.
45. Makote, R.; Collinson, M. M., Organically modified silicate films for stable pH sensors. Analytica Chimica Acta 1999, 394 (2-3), 195-200.
46. Ci, Y. X.; Qin, Y.; Chang, W. B.; Li, Y. Z., Application of a Mimetic Enzyme for the Enzyme-Immunoassay for Alpha-1-Fetoprotein. Analytica Chimica Acta 1995, 300 (1-3), 273-276.
47. Liu, Y. F.; Wang, S. P.; Lee, J. W.; Kotov, N. A., A floating self-assembly route to colloidal crystal templates for 3D cell scaffolds. Chemistry of Materials 2005, 17 (20), 4918-4924.
48. Fudouzi, H., Fabricating high-quality opal films with uniform structure over a large area. Journal of Colloid and Interface Science 2004, 275 (1), 277-283.
49. Xia, Y. N.; Gates, B.; Yin, Y. D.; Lu, Y., Monodispersed colloidal spheres: Old materials with new applications. Advanced Materials 2000, 12 (10), 693-713.
50. Nishimura, S.; Abrams, N.; Lewis, B. A.; Halaoui, L. I.; Mallouk, T. E.; Benkstein, K. D.; van de Lagemaat, J.; Frank, A. J., Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals. Journal of the American Chemical Society 2003, 125 (20), 6306-6310.
51. Denkov, N. D.; Velev, O. D.; Kralchevsky, P. A.; Ivanov, I. B.; Yoshimura, H.; Nagayama, K., Mechanism of Formation of 2-Dimensional Crystals from Latex-Particles on Substrates. Langmuir 1992, 8 (12), 3183-3190.
52. Koh, Y. K.; Wong, C. C., In situ monitoring of structural changes during colloidal self-assembly. Langmuir 2006, 22 (3), 897-900.
53. Stein, A.; Schroden, R. C., Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond. Current Opinion in Solid State & Materials Science 2001, 5 (6), 553-564.
54. Kim, S. I.; Kim, G. Y.; Lim, H. M.; Lee, B. W.; Nah, J. W., Optimum synthesis and characterization of precursor solution for a hard coating silica film prepared by sol-gel process. Bulletin of the Korean Chemical Society 2000, 21 (8), 817-822.
55. Zhang, G. C.; Chen, Y. F.; Li, H. Y.; Xie, Y. S., Preparation of silica-based inorganic-organic hybrid membrane via the sol-gel route. Journal of Sol-Gel Science and Technology 2000, 19 (1-3), 425-428.