研究生: |
施延霖 Shih,Yen-Lin |
---|---|
論文名稱: |
以覆晶封裝之960 X 540 氮化鎵微型發光二極體陣列 Flip-Chip Bonding for 960 X 540 GaN-Based Micro Light Emitting Diode Array |
指導教授: |
吳孟奇
Wu,Meng Chyi 何充隆 Ho,Chong Long |
口試委員: |
黃麒甄
盧峙丞 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 68 |
中文關鍵詞: | 覆晶封裝 、微型發光二極體 |
外文關鍵詞: | Flip Chip Bonding, Micro LED |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,覆晶封裝已逐漸成為封裝產業上重要的一項技術,比起傳統打線封裝技術,其高I/O、縮小體積及其較短電流傳遞路徑,加上其散熱效果好,其與光電元件結合的潛能得使得許多元件的封裝都尋求應用此項技術。本研究以開發圖像顯示的微型發光二極體(mLED)陣列應用覆晶封裝的技術為目的,其重點在於找出封裝的最佳條件,並尋求製程的精進使得每個像素都能出光,提升畫素之良率並有良好的均勻度。最終完成一覆晶型960 540微型發光二極體陣列,其良率為46.42%。
由於藍寶石基板的低熱傳導及絕緣特性,使得微型發光二極體陣列可應用於多項用途,因應未來主流應用於大陣列尺寸且產能需求,本研究以銦作為接合材料,建立6 um高度之銦凸塊蒸鍍技術,輔以串聯迴路之菊輪狀結構(Daisy Chain)測試其電性,找出適當接合之條件及後續之底填(Underfill)程序,測試出在100°C 30s 60N會有最小單點電阻0.0597 Ω,並應用於覆晶型微型發光二極體陣列,以此研究為根基,未來應用於穿戴式裝置及無光罩微影,推廣並拓展LED應用面及增加其產值。
Recently, Flip-chip bonding plays an important role in bonding industries. Rather than traditional wire bonding, flip-chip bonding have many merits including high I/O, smaller size, shorter electrical path and better heat dissipation. Thus, many optoelectronics devices are asked for combination with this technique. The purpose of this research is to develop micro light emitting diode array applying flip-chip technique and aim for finding out the best parameter for flip-chip bonding. Besides, it is hoped to let all pixels lightened, increase yield and achieve well uniformity as process enhanced. At last, the 960 540 mLEDA by flip chip bonding is fabricated with yield rate 46.42%.
Because of insulating and hardness of sapphire, micro LED array has many potential in many fields. In response to larger size array and capacity requirements in the future, we use indium as interconnection material which is 6 um high by e-beam evaporation in this thesis. Daisy chain used for evaluating the inter-chip connectivity is also brought to our experiment. After finding out optimal bonding parameter and method for injection of underfill, the smallest single bump resistance in 10um diameter of daisy chain is 0.0597 Ω. Finally, apply the bonding parameter in 960 540 mLEDA.
We hope that this research would be dedicated to development of wearable devices and mask-free photolithography in the future and expanding potential applications of LED.
1. http://www.compoundsemiconductor.net/article/89562-the-challenges-for-going-green.html
2. http://www.compoundsemiconductor.net/article/91717-the-evolving-gan-vcsel.html
3. http://discovermagazine.com/2014/jan-feb/69-a-glass-half-empty
4. https://www.materialsnet.com.tw/DocView.aspx?id=11401
5. C. C. An, M. H. Wu, Y. W. Huang, T. H. Chen, C. H. Chao, and W. Y. Yeh, “Study of flip chip assembly of high density micro-LED array,” in 6th Int. Microsyst., Packag., Assembly, Circuits Technol. Conf. (IMPACT), pp. 336-338, October 2011.
6. Elenius, P., Levine,L, “Comparing Flip-Chip and Wire-Bond interconnection technologies”. Chip Scale Review, 2000.
7. https://en.wikipedia.org/wiki/Wire_bonding
8. http://www.epakelectronics.com/spt_capillaries_bsob.htm
9. Wolf, J. “Flip chip bumping technology-status and update” Nuclear Instruments and Methods in Physics Research, pp.290-295, 2006.
10. Jittinorasett, Suwanna. “UBM formation on single die/dice for flip chip applications”, Diss. Virginia Polytechnic Institute and State University, 1999.
11. https://en.wikipedia.org/wiki/Wetting
12. Leger, Jon-Claude. “Thermo-mechanical reliability and electrical performance of indium interconnects and under bump metallization”. Diss. 2015.
13. Indium Corporation. Physical Constants of Pure Indium. 2015, http://www.indium.com/metals/indium/physical-constants/
14. http://hyperphysics.phy-astr.gsu.edu/hbase/solids/pnjun2.html
15. http://www.ledsmagazine.com/articles/2004/01/terminology-led-efficiency.html
16. E. Fred Schubert, “Light-Emitting Diodes”, 2nd ed, CAMBRIDGE, chapter 8, 2006.
17. Thompson, G. H. B., “Physics of semiconductor laser devices”, Chichester, Sussex, England and New York, Wiley-Interscience, pp.572, 1980.
18. Cihangir, S., & Kwan, S, “Characterization of indium and solder bump bonding for pixel detectors” Nuclear. Instrument and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 476(3), pp. 670-675, 2002.
19. S. Wakiyama, H. Ozaki, Y. Nabe, T. Kume, T. Ezaki, and T. Ogawa, “Novel low-temperature CoC interconnection technology for multichip LSI (MCL),” in Proc. Electron. Compon. Technol. Conf., 2007, pp. 610–615.
20. Singh, A., Horsley, D. A., Cohn, M. B., Pisano, A. P., & Howe, R. T., “Batch transfer of microstructures using Flip-Chip solder bonding”, IEEE JOURNAL OF MICROELECTOMECHANICAL SYSTEMS, Vol. 8, No. 1, pp. 27-33, March 1999.
21. K. De Munck, D. S. Tezcan, T. Borgers, W. Ruythooren, P. De Moor, S. Sedky, C. Toccafondi, J. Bogaerts and C. Van Hoof, “High performance hybrid and monolithic backside thinned CMOS imagers realized using a new integration process”, Proceedings of the IEEE International Electron Devices Meeting, p139-142, Dec. 11-13, 2006.
22. Kim, J., Schoeller, H., Cho, J., & Park, S. "Effect of oxidation on indium solderability" Journal of electronic materials 37.4 , pp.483-489, 2008.
23. Huang, Y., Lin, C., Ye, Z. H., & Ding, R. J. "Reflow flip-chip bonding technology for infrared detectors” Journal of Micromechanics and Microengineering, 25(8), 2015.