研究生: |
周育諒 Chou, Yu-Liang |
---|---|
論文名稱: |
十位元每秒取樣四千萬次管線式類比數位轉換器之實現 Implementation of the 10-bit 40-MS/s Pipelined ADC |
指導教授: |
鄭桂忠
Tang, Kea-Tiong |
口試委員: |
盧志文
LU, Chih-Wen 陳伯奇 Chen, Poki |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 類比數位轉換器 、管線式 、1.5-bit/stage 、疊接式米勒補償 |
外文關鍵詞: | ADC, pipelined, 1.5-bit/stage, caccode miller compensation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文提出詳細的管線式類比數位轉換器設計流程,分別從頻域與時域的觀點來設計與考量電路運作與其效能,並且採用電路模擬軟體完成整體電路設計與晶片佈局。本次設計取樣頻率為40MHz的10位元管線式類比數位轉換器,採用TSMC 0.18µm 1P6M製程,其供應電壓為1.8V。類比數位轉換器採用1.5-bit/stage技術,克服比較器偏移產生的誤差,並且可以減輕比較器所需要的規格。開關式電容電路採用疊接式米勒補償來提高運算放大器的穩定度。
此類比數位轉換器運用電路模擬軟體設計。經由佈局後模擬結果可得知,當操作電壓為1.8V,取樣頻率為40MHz,輸入頻率為奈奎斯特取樣率,其訊號對雜訊失真比為60.804dB,總功率消耗為67.5mW,FOM的效能為1.88pJ/conversion-step,晶片核心面積為1.66mm2。
This thesis presents the design flow of Pipeline ADC that discusses the operation and effect of circuit in aspects of time and frequency domains in detail by applying circuit simulation tools to finish the design and the layout of whole ADC. The 10-bit 40MHz pipelined analog-to-digital converter was fabricated in a TSMC 0.18µm 1P6M process with 1.8V supply voltage. Design concept of 1.5-bit/stage is employed to mitigate the error effects of comparator offset. Moreover, the 1.5-bit/stage is configured to decrease the speciation of comparators. In the circuit level, the cascade miller compensation is adopted for the design of the switch-capacitor circuit to enhance the stability of operational amplifier. At a 1.8-V supply and 40MS/s, the simulation result achieves an SNDR of 60.804 dB while consumes 67.5 mW, resulting in a figure of merit (FOM) of 1.88 pJ/conversion-step. The ADC core occupies an active area of 1.66 mm2.
[1] David A. Johns and Ken Martin, ”Analog Integrated Circuit Design,” John Wiley & Sons, Inc., 1997.
[2] Mikael Gustavsson, J. Jacob Wikner and Nianxiong Nick Tan, ”CMOS Data Converter For Communication,” Kluwer Academic Publishers, Boston, 2002.
[3] Behzad Razavi, ”Design of Analog CMOS Integrated Circuit,” McGraw-Hill, Boston,2001.
[4] John P. Uyemura, ”CMOS Logic Circuit Design,” Kluwer Academic Publishers, Boston, 1999.
[5] R. Jacob Baker, “CMOS: Circuit Design, Layout, and Simulation,” Wiley-IEEE Press, 2005.
[6] Andrew Masami Abo,”Design for Reliability of Low-voltage, Switched-capacitor Circuits,” Ph.D. Thesis, University of California, Berkeley, 1999.
[7] Fayomi, C.J.B.; Roberts, G.W.; Sawan, M., ”Low-voltage CMOS analog bootstrapped switch for sample-and-hold circuit: design and chip characterization,” ISCAS Circuits and Systems, Vol. 3 , pp. 2200-2203, May 2005.
[8] Byung-Moo Min, P. Kim, D. Boisvert, and A. Aude, “A 69 mW 10 b 80 MS/s pipelined CMOS ADC,” IEEE International Solid-State Circuits Conference, 2003
[9] T. B. Choand P. R. Gray, “A 10b, 20MSample/s, 35mW Pipeline A/D Converter,” IEEE Journal of Solid-State Circuits, vol.SC-30, no.5, pp.166- 172, Mar. 1995.
[10] S. H. Lewis, H. S. Fetterman, G. F. Gross Jr., R. Ramachandran, T.R. Viswanathan,“A 10-b 20Msample/s Analog-to-Digital Converter,” IEEE J. Solid-State Circuits,Vol. 27, pp.351-358, March 1992.
[11] Yong-In Park, S .Karthikeyan, F. Tsay, and E. Bartolome, “A 10-b 100- MSample/s CMOS pipelined ADC with 1.8 V power supply,” IEEE International Solid-State Circuits Conference, Feb. 2001
[12] J. Steensgaard, ”Bootstrapped low-voltage analog switches,” in Proc. IEEE int. Symp.Circuits and System (ISCAS), vol.2, pp. 29-32, May 1999.
[13] Mehr and L. Singer, “A 55-mW, 10-bit, 40-Msample/s Nyquist-rate CMOS ADC,”IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 318–325, Mar. 2000.
[14] P. C. Yu, and H. S. Lee, “2.5-V, 12-b, 5MS/s Pipelined CMOS ADC,” IEEE J. Solid-State Circuits, vol. 31, no. 12, pp. 1854-1861, Dec. 1996.
[15] G. Hoogzaad, R. Roovers, “A 65-mW, 10-bit, 40-Msample/s BiCMOS Nyquist ADC in 0.8 mm2,” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1796 – 1802, Dec. 1999.
[16] T. Cho and P. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to-Digital Converter,” IEEE J. Solid-State Circuits, vol. 30, no.3, pp. 166–172, Mar. 1995.
[17] J. Doernberg, H-S. Lee, D. A. Hodges, “Full-Speed Testing of A/D Converters,” IEEE J. Solid-State Circuits, vol. SC-19, no. 6, Dec. 1984.
[18] C. Ojas, L. R. Carley, “Analysis of Switched-Capacitor Common-Mode Feedback Circuit,” IEEE Transactions on Circuit and Systems, Vol. 50, pp.3226-334, Dec. 2003.
[19] P. R. Surkanti, A. Garimella, and P. M. Furth, “Pole-zero analysis of multi-stage amplifiers: A tutorial overview,” in IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), 2011, Aug. 2011, pp. 1–4.
[20] P. J. Hurst, S. H. Lewis, J. P. Keane, F. Aram, and K. C. Dyer, “Miller compensation using current buffers in fully differential CMOS two-stage operational amplifiers,” IEEE Trans. Circuits Syst. I, vol. 51, no. 2, pp. 275–285, Feb. 2004.
[21] I. Ahmed, and D. A. Johns, “A high bandwidth power scalable sub-sampling10-bit pipelined ADC with embedded sample and hold,” IEEE J. Solid-State Circuits, vol. 43, no. 7, pp. 1638-1647, July 2008.
[22] J. Shen and P. Kinget, “A 0.5-V 8-bit 10-Ms/s pipelined ADC in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 787–795, Apr. 2008.
[23] K. Chandrashekar, M. Corsi, J. Fattaruso, and B. Bakkaloglu, “A 20-MS/s to 40-MS/s reconfigurable pipeline ADC implemented with parallel OTA scaling,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 8, pp. 602–606, Aug. 2010.
[24] D. Gubbins, B. Lee, P. Hanumolu, and U. Moon, “Continuous-time input pipeline ADCs,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1456– 1468, Aug. 2010.