研究生: |
蔡雅晴 |
---|---|
論文名稱: |
Thermo- and photo-driven crystalline molecular switches comprising pseudorotaxanes |
指導教授: | 堀江正樹 |
口試委員: |
蘇安仲
游進陽 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 113 |
中文關鍵詞: | Supermolecule 、Molecular switch 、Thermo-responsive 、Photoresponsive 、Pseudorotaxane |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
This thesis describes the thermo- and photo-driven molecular switches comprising ferrocene-containing pseudorotaxanes in the solid state. Chapter 1 presents an overview of supermolecular chemistry as well as the purpose of this project. Chapter 2 describes the reversible mechanical deformations of the single crystals of the pseudorotaxanes caused by a combination of temperature control and light-irradiation. Laser irradiation to the ferrocenyl group of the pseudorotaxane induces molecular structural changes in the crystals: it triggers a crystal-to-crystal thermal phase transition deforming the crystal shape at 124 ºC; it causes rapid and reversible expansion of the crystal at room temperature. In addition, the local laser irradiation to a part of the single crystal enables selective transport of micro-particles. Chapter 3 describes the preparation and morphological studies of the thermally responsive pseudorotaxane films. The thin films of the pseudorotaxane molecule can be prepared on a glass or SiO2 substrates by a solution casting method, which affords the polycrystalline films without dissociation of the pseudorotaxane molecule. Obtained films are characterized by X-ray diffraction, differential scanning calorimetry (DSC), polarized optical microscopy, and grazing incident wide-angle X-ray scattering (GIWAXS) measurement with temperature control. The pseudorotaxane film on the substrate exhibits the reorganization of the molecule to give a large crystal face with 50-100 μm on heating, followed by the reversible solid-to-solid thermal phase transition on heating and cooling. GIWAXS analysis can conduce to the molecular alignment of the pseudorotaxane in the film; the pseudorotaxane adopts edge-on orientation, in which one-side of oligo-ethylene glycol group -(CH2CH2O)n- of the dibenzocrown ether molecule in the pseudorotaxane lies on the substrate, probably due to the molecule-surface interaction and formation of the bulky interlocked structure. Chapter 4 described the synthesis and characterization of a new pseudorotaxane composed of 4,4’,5,5’-tetrabromodibenzo[24]crown-8 ether as a ring molecule and ferrocene-containing ammonium cation as an axle molecules. The optical properties of the pseudorotaxane are observed and related to the molecular alignment in the single crystal state. Chapter 5 presents the conclusions of the project and gives forecast of this research. Finally chapter 6 presents the experimental conditions.
[1] K. L. Wolf, H. Frahm, H. Harms, Z Phys. Chem. B-Chem. E. 1937, 36, 237-287.
[2] P. A. G. P.D. Beer, D.K. Smith, Supramolecular Chemistry, Oxford University Press: Great Britain, 1999.
[3] K. L. Wolf, R. Wolff, Angew. Chem-Ger. Edit. 1949, 61, 191-201.
[4] J. M. Lehn, Angew. Chem. Int. Ed. Engl. 1988, 27, 89-112.
[5] J. W. Steed, D. R. Turner, K. J. Wallace, Core Concepts in Supramolecular Chemistry and Nanochemistry, John Wiley & Sons, Inc., 2007.
[6] E. Wasserman, J. Am. Chem. Soc. 1960, 82, 4433-4434.
[7] M. Cesario, C. O. Dietrichbuchecker, J. Guilhem, C. Pascard, J. P. Sauvage, J Chem. Soc. Chem. Comm. 1985, 244-247.
[8] T. J. Hubin, D. H. Busch, Coordin. Chem. Rev. 2000, 200, 5-52.
[9] D. B. Amabilino, P. R. Ashton, A. S. Reder, N. Spencer, J. F. Stoddart, Angew. Chem. Int. Edit. 1994, 33, 1286-1290.
[10] E. R. Kay, D. A. Leigh, F. Zerbetto, Angew. Chem. Int. Edit. 2007, 46, 72–191.
[11] B. Champin, P. Mobian and J.-P. Sauvage, Chem. Soc. Rev. 2007, 36, 358–366.
[12] A. Coskun, M. Banaszak, R. D. Astumain, B. A. Grzybowski, J. F. Stoddart, Chem. Soc. Rev. 2012, 41, 19-30.
[13] J. D. Badjic, V. Balzani, A. Credi, S. Silvi, J. F. Stoddart, Science. 2004, 303, 1845-1849.
[14] A. J. Vernall, L. A. Stoddart, S. J. Briddon, S. J. Hill, B. Kellam, J. Med. Chem. 2012, 55, 1771-1782.
[15] J. M. Spruell, W. F. Paxton, J. C. Olsen, D. Benitez, E. Tkatchouk, C. L. Stern, A. Trabolsi, D. C. Friedman, W. A. Goddard, J. F. Stoddart, J. Am. Chem. Soc. 2009, 131, 11571-11580.
[16] R. A. van Delden, M. K. J. ter Wiel, M. M. Pollard, J. Vicario, N. Koumura, B. L. Feringa, Nature. 2005, 437, 1337-1340.
[17] N. Koumura, E. M. Geertsema, M. B. van Gelder, A. Meetsma, B. L. Feringa, J. Am. Chem. Soc. 2002, 124, 5037-5051.
[18] Y. Liu, A. H. Flood, P. A. Bonvallett, S. A. Vignon, B. H. Northrop, H. R. Tseng, J. O. Jeppesen, T. J. Huang, B. Brough, M. Baller, S. Magonov, S. D. Solares, W. A. Goddard, C. M. Ho, J. F. Stoddart, J. Am. Chem. Soc. 2005, 127, 9745-9759.
[19] A. Coskun, M. Banaszak, R. D. Astumian, J. F. Stoddart, B. A. Grzybowski, Chem. Soc. Rev. 2012, 41, 19-30.
[20] V. N. Vukotic, K. J. Harris, K. Zhu, R. W. Schurko, S. J. Loeb, Nat. Chem. 2012, 4, 456-460.
[21] M. A. Garcia-Garibay, Proc. Natl. Acad. Sci. U.S.A.2005, 102, 10771-10776
[22] C. S. Vogelsberg, M. A. Garcia-Garibay, Chem. Soc. Rev. 2012, 41, 1892-1910.
[23] B. Rodriguez-Molina, N. Farfan, M. Romero, J. M. Mendez-Stivalet, R. Santillan, M. A. Garcia-Garibay, J. Am. Chem. Soc. 2011, 133,7280-7283.
[24] T. Akutagawa, H. Koshinaka, D. Sato, S. Takeda, S. I. Noro, H. Takahashi, R. Kumai, Y. Tokura, T. Nakamura, Nat. Mater. 2009, 8, 342-347.
[25] M. Horie, Y. Suzaki, K. Osakada, T. Sassa, D. Hashizume, T. Wada, Angew. Chem., Int. Ed. 2007, 46, 4983–4986.
[26] M. Horie, Y. Suzaki, D. Hashizume, T. Abe, T. Wu, T. Sassa, T. Hosokai, K. Osakada, J. Am. Chem. Soc. 2012, 134, 17932-17944.
[27] M. Horie, Y. Suzaki, K. Osakada, Inorg. Chem. 2005, 44, 5844-5853.
[28] S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, K. J. Tanabe, Am. Chem. Soc. 2002, 124, 104-112.
[29] Y. Yu, M. Nakano, T. Ikeda, Nature, 2003, 425, 145.
[30] M. C. Lopez, H. Finkelmann, P. P. Muhoray, M. Shelley, Nat. mater, 2004, 3, 307-309.
[31] B. Kundys, M. Viret, D. Colson, D. O. Kundys, Nat. mater, 2010, 9, 803-805.
[32] J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. J. Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin, H. R. Tseng, J. F. Stoddart, J. R. Heath, Nature. 2007, 445, 414-417.
[33] Y. Chen, D. A. A. Ohlberg, X. M. Li, D. R. Stewart, R. S. Williams, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, D. L. Olynick, E. Anderson, Appl. Phys. Lett. 2003, 82, 1610-1612.
[34] H. B. Yu, Y. Luo, K. Beverly, J. F. Stoddart, H. R. Tseng, J. R. Heath, Angew. Chem. Int. Edit. 2003, 42, 5706-5711.
[35] H. J. Yoon, J. Kuwabara, J. H. Kim, C. A. Mirkin, Science. 2010, 330, 66-69.
[36] S. Kobatake, S. Takami, H. Muto, T. Ishikawa, M. Irie, Nature. 2007, 446, 778-78.
[37] M. Morimoto, M. Irie, J. Am. Chem. Soc. 2010, 132, 14172-14178.
[38] F. Terao, M. Morimoto, M. Irie, Angew. Chem., Int. Ed. 2012, 51, 901-904.
[39] L. Zhu, R. O. Al-Kaysi, C. J. Bardeen, J. Am. Chem. Soc. 2011, 133, 12569-12575.
[36] S. Kobatake, S. Takami, H. Muto, T. Ishikawa, M. Irie, Nature. 2007, 446, 778-78.
[37] M. Morimoto, M. Irie, J. Am. Chem. Soc. 2010, 132, 14172-14178.
[38] F. Terao, M. Morimoto, M. Irie, Angew. Chem., Int. Ed. 2012, 51, 901-904.
[39] L. Zhu, R. O. Al-Kaysi, C. J. Bardeen, J. Am. Chem. Soc. 2011, 133, 12569-12575.
[40] H. Koshima, N. Ojima, H. Uchimoto J. Am. Chem. Soc. 2009, 131, 6890–6891.
[41] M. D. Lowery, R. J. Wittebort, M. Sorai, D. N. J. Hendrickson, J. Am. Chem. Soc. 1990, 112, 4214-4225.
[42] L. Zalewski, S. Brovelli, M. Bonini, J. M. Mativetsky, M. Wykes, E. Orgiu, T. Breiner, M. Kastler, F. Dötz, F. Meinardi, H. L. Anderson, D. Beljonne, F. Cacialli, P. Samorì, Adv. Funct. Mater. 2011, 21, 834–844.
[43] A. Datar, R. Oitker, L. Zang, Chem. Commun. 2006, 0, 1649–1651.
[44] G. De Luca, E. Treossi, A. Liscio, J. M. Mativetsky, L. M. Scolaro, V. Palermo, P. Samorì, J. Mater. Chem. 2010, 20, 2493–2498.
[45] H.Tanaka, T. Ikeda, M. Takeuchi, K. Sada, S. Shinkai, T. Kawai, Acs Nano. 2011, 5, 9575–9582.
[46] N. Bouchera, J. Leroyb, S. Sergeyevb, E. Pouzet b, V. Lemaurc, R. Lazzaronic, J. Cornilc, Y. H. Geertsb, M. Sferrazzaa, Syn. Metals. 2009, 159, 1319–1324.
[47] C. Meyer, L. L. Cunff, M. Belloul, G. Foyart, Materials. 2009, 2, 499-513.
[48] W. Chen, M. P. Nikiforov, S. B. Darling, Energy Environ. Sci, 2012, 5, 8045–8074.
[49] U. S. Jeng, C.-H. Su, C.-J. Su, K.-F. Liao, W.-T. Chuang, Y.-H. Lai, J.-W. Chang, Y.-J. Chen, Y.-S. Huang, M.-T. Lee, K.-L. Yu, J.-M. Lin and D.-G. Liu, et al., J. Appl. Crystallogr, 2010, 43, 110–121
[50] I. R. Fernando, G. Mezei, Inorg. Chem. 2012, 51, 3156-3160.
[51 M. Mohankumar, M. Holler, M. Schmitt, J. P. Sauvage, J. F. Nierengarten, Chem. Commun. 2013, 49, 1261-1263.
[52] A. Caballero, S. Bennett, C. J. Serpell, P. D. Beer, Cryst. Eng. Comm. 2013, 15, 3076-3081.