簡易檢索 / 詳目顯示

研究生: 蔡雅晴
論文名稱: Thermo- and photo-driven crystalline molecular switches comprising pseudorotaxanes
指導教授: 堀江正樹
口試委員: 蘇安仲
游進陽
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 113
中文關鍵詞: SupermoleculeMolecular switchThermo-responsivePhotoresponsivePseudorotaxane
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This thesis describes the thermo- and photo-driven molecular switches comprising ferrocene-containing pseudorotaxanes in the solid state. Chapter 1 presents an overview of supermolecular chemistry as well as the purpose of this project. Chapter 2 describes the reversible mechanical deformations of the single crystals of the pseudorotaxanes caused by a combination of temperature control and light-irradiation. Laser irradiation to the ferrocenyl group of the pseudorotaxane induces molecular structural changes in the crystals: it triggers a crystal-to-crystal thermal phase transition deforming the crystal shape at 124 ºC; it causes rapid and reversible expansion of the crystal at room temperature. In addition, the local laser irradiation to a part of the single crystal enables selective transport of micro-particles. Chapter 3 describes the preparation and morphological studies of the thermally responsive pseudorotaxane films. The thin films of the pseudorotaxane molecule can be prepared on a glass or SiO2 substrates by a solution casting method, which affords the polycrystalline films without dissociation of the pseudorotaxane molecule. Obtained films are characterized by X-ray diffraction, differential scanning calorimetry (DSC), polarized optical microscopy, and grazing incident wide-angle X-ray scattering (GIWAXS) measurement with temperature control. The pseudorotaxane film on the substrate exhibits the reorganization of the molecule to give a large crystal face with 50-100 μm on heating, followed by the reversible solid-to-solid thermal phase transition on heating and cooling. GIWAXS analysis can conduce to the molecular alignment of the pseudorotaxane in the film; the pseudorotaxane adopts edge-on orientation, in which one-side of oligo-ethylene glycol group -(CH2CH2O)n- of the dibenzocrown ether molecule in the pseudorotaxane lies on the substrate, probably due to the molecule-surface interaction and formation of the bulky interlocked structure. Chapter 4 described the synthesis and characterization of a new pseudorotaxane composed of 4,4’,5,5’-tetrabromodibenzo[24]crown-8 ether as a ring molecule and ferrocene-containing ammonium cation as an axle molecules. The optical properties of the pseudorotaxane are observed and related to the molecular alignment in the single crystal state. Chapter 5 presents the conclusions of the project and gives forecast of this research. Finally chapter 6 presents the experimental conditions.


    Abstract I Table of contents III Chapter 1 Introduction and aim 1 1.1 Introduction of supermolecular chemistry 1 1.1.1 Supermolecules 1 1.1.2 Supermolecular chemistry 2 1.1.3 Shape of supermolecules 4 1.2 Molecular switches and machines 6 1.2.1 Artificial molecular switches (AMSs) 8 1.2.2 Artificial molecular machines (AMMs) 11 1.3 Movement of molecules in solid state: metal–organic frameworks (MOFs) 13 1.4 Conversion of molecular motion into macroscopic motion 17 1.4.1 Thermo-induced movement of molecules 17 1.4.2 Photo-induced movement of matters caused by molecular motions 21 1.5 Application of rotaxanes 25 1.6 Aim of the work 29 Chapter 2 Photo-induced mechanical motion of pseudorotaxane crystals 31 2.1 Introduction 31 2.2 Photo-induced mechanical motion of single crystal of pseudorotaxane 34 2.3 Transportation of micro-particles 40 2.4 Multi stimuli-responsive pseudorotaxane crystal 43 2.5 Conclusion 49 Chapter 3 Preparation and characterization of pseudorotaxane film 50 3.1 Introduction 50 3.2 Preparation of film 55 3.3 Characterization of film 56 3.4 Thermal and optical properties 64 3.5 Morphological characterization 67 3.6 Conclusion 74 Chapter 4 Synthesis and characterization of pseudorotaxane composed of crown ether with ferrocene-containing axle molecule 76 4.1 Introduction 76 4.2 Synthesis of pseudorotaxanes 77 4.3 X-ray single crystallography 82 4.4 Optical properties 84 4.5 Thermal properties 87 4.6 Conclusion 91 Chapter 5 Conclusion 92 Chapter 6 Experimental section 94 6.1 General methods 94 6.2 Birefringence measurement 95 6.3 Optical setup with laser light 99 6.4 Preparation of p-xylyl(ferrocenylmethyl)ammonium hexafluorophosphate, [F-H]+(PF6)- 102 6.5 Preparation of pseudorotaxane: [F•DB24C8](PF6) 105 6.6 Preparation of pseudorotaxane: [F•DB24C8-Br4](PF6) 107 6.7 X-ray single crystallography 109 References 111

    [1] K. L. Wolf, H. Frahm, H. Harms, Z Phys. Chem. B-Chem. E. 1937, 36, 237-287.
    [2] P. A. G. P.D. Beer, D.K. Smith, Supramolecular Chemistry, Oxford University Press: Great Britain, 1999.
    [3] K. L. Wolf, R. Wolff, Angew. Chem-Ger. Edit. 1949, 61, 191-201.
    [4] J. M. Lehn, Angew. Chem. Int. Ed. Engl. 1988, 27, 89-112.
    [5] J. W. Steed, D. R. Turner, K. J. Wallace, Core Concepts in Supramolecular Chemistry and Nanochemistry, John Wiley & Sons, Inc., 2007.
    [6] E. Wasserman, J. Am. Chem. Soc. 1960, 82, 4433-4434.
    [7] M. Cesario, C. O. Dietrichbuchecker, J. Guilhem, C. Pascard, J. P. Sauvage, J Chem. Soc. Chem. Comm. 1985, 244-247.
    [8] T. J. Hubin, D. H. Busch, Coordin. Chem. Rev. 2000, 200, 5-52.
    [9] D. B. Amabilino, P. R. Ashton, A. S. Reder, N. Spencer, J. F. Stoddart, Angew. Chem. Int. Edit. 1994, 33, 1286-1290.
    [10] E. R. Kay, D. A. Leigh, F. Zerbetto, Angew. Chem. Int. Edit. 2007, 46, 72–191.
    [11] B. Champin, P. Mobian and J.-P. Sauvage, Chem. Soc. Rev. 2007, 36, 358–366.
    [12] A. Coskun, M. Banaszak, R. D. Astumain, B. A. Grzybowski, J. F. Stoddart, Chem. Soc. Rev. 2012, 41, 19-30.
    [13] J. D. Badjic, V. Balzani, A. Credi, S. Silvi, J. F. Stoddart, Science. 2004, 303, 1845-1849.
    [14] A. J. Vernall, L. A. Stoddart, S. J. Briddon, S. J. Hill, B. Kellam, J. Med. Chem. 2012, 55, 1771-1782.
    [15] J. M. Spruell, W. F. Paxton, J. C. Olsen, D. Benitez, E. Tkatchouk, C. L. Stern, A. Trabolsi, D. C. Friedman, W. A. Goddard, J. F. Stoddart, J. Am. Chem. Soc. 2009, 131, 11571-11580.
    [16] R. A. van Delden, M. K. J. ter Wiel, M. M. Pollard, J. Vicario, N. Koumura, B. L. Feringa, Nature. 2005, 437, 1337-1340.
    [17] N. Koumura, E. M. Geertsema, M. B. van Gelder, A. Meetsma, B. L. Feringa, J. Am. Chem. Soc. 2002, 124, 5037-5051.
    [18] Y. Liu, A. H. Flood, P. A. Bonvallett, S. A. Vignon, B. H. Northrop, H. R. Tseng, J. O. Jeppesen, T. J. Huang, B. Brough, M. Baller, S. Magonov, S. D. Solares, W. A. Goddard, C. M. Ho, J. F. Stoddart, J. Am. Chem. Soc. 2005, 127, 9745-9759.
    [19] A. Coskun, M. Banaszak, R. D. Astumian, J. F. Stoddart, B. A. Grzybowski, Chem. Soc. Rev. 2012, 41, 19-30.
    [20] V. N. Vukotic, K. J. Harris, K. Zhu, R. W. Schurko, S. J. Loeb, Nat. Chem. 2012, 4, 456-460.
    [21] M. A. Garcia-Garibay, Proc. Natl. Acad. Sci. U.S.A.2005, 102, 10771-10776
    [22] C. S. Vogelsberg, M. A. Garcia-Garibay, Chem. Soc. Rev. 2012, 41, 1892-1910.
    [23] B. Rodriguez-Molina, N. Farfan, M. Romero, J. M. Mendez-Stivalet, R. Santillan, M. A. Garcia-Garibay, J. Am. Chem. Soc. 2011, 133,7280-7283.
    [24] T. Akutagawa, H. Koshinaka, D. Sato, S. Takeda, S. I. Noro, H. Takahashi, R. Kumai, Y. Tokura, T. Nakamura, Nat. Mater. 2009, 8, 342-347.
    [25] M. Horie, Y. Suzaki, K. Osakada, T. Sassa, D. Hashizume, T. Wada, Angew. Chem., Int. Ed. 2007, 46, 4983–4986.
    [26] M. Horie, Y. Suzaki, D. Hashizume, T. Abe, T. Wu, T. Sassa, T. Hosokai, K. Osakada, J. Am. Chem. Soc. 2012, 134, 17932-17944.
    [27] M. Horie, Y. Suzaki, K. Osakada, Inorg. Chem. 2005, 44, 5844-5853.
    [28] S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, K. J. Tanabe, Am. Chem. Soc. 2002, 124, 104-112.
    [29] Y. Yu, M. Nakano, T. Ikeda, Nature, 2003, 425, 145.
    [30] M. C. Lopez, H. Finkelmann, P. P. Muhoray, M. Shelley, Nat. mater, 2004, 3, 307-309.
    [31] B. Kundys, M. Viret, D. Colson, D. O. Kundys, Nat. mater, 2010, 9, 803-805.
    [32] J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. J. Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin, H. R. Tseng, J. F. Stoddart, J. R. Heath, Nature. 2007, 445, 414-417.
    [33] Y. Chen, D. A. A. Ohlberg, X. M. Li, D. R. Stewart, R. S. Williams, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, D. L. Olynick, E. Anderson, Appl. Phys. Lett. 2003, 82, 1610-1612.
    [34] H. B. Yu, Y. Luo, K. Beverly, J. F. Stoddart, H. R. Tseng, J. R. Heath, Angew. Chem. Int. Edit. 2003, 42, 5706-5711.
    [35] H. J. Yoon, J. Kuwabara, J. H. Kim, C. A. Mirkin, Science. 2010, 330, 66-69.
    [36] S. Kobatake, S. Takami, H. Muto, T. Ishikawa, M. Irie, Nature. 2007, 446, 778-78.
    [37] M. Morimoto, M. Irie, J. Am. Chem. Soc. 2010, 132, 14172-14178.
    [38] F. Terao, M. Morimoto, M. Irie, Angew. Chem., Int. Ed. 2012, 51, 901-904.
    [39] L. Zhu, R. O. Al-Kaysi, C. J. Bardeen, J. Am. Chem. Soc. 2011, 133, 12569-12575.
    [36] S. Kobatake, S. Takami, H. Muto, T. Ishikawa, M. Irie, Nature. 2007, 446, 778-78.
    [37] M. Morimoto, M. Irie, J. Am. Chem. Soc. 2010, 132, 14172-14178.
    [38] F. Terao, M. Morimoto, M. Irie, Angew. Chem., Int. Ed. 2012, 51, 901-904.
    [39] L. Zhu, R. O. Al-Kaysi, C. J. Bardeen, J. Am. Chem. Soc. 2011, 133, 12569-12575.
    [40] H. Koshima, N. Ojima, H. Uchimoto J. Am. Chem. Soc. 2009, 131, 6890–6891.
    [41] M. D. Lowery, R. J. Wittebort, M. Sorai, D. N. J. Hendrickson, J. Am. Chem. Soc. 1990, 112, 4214-4225.
    [42] L. Zalewski, S. Brovelli, M. Bonini, J. M. Mativetsky, M. Wykes, E. Orgiu, T. Breiner, M. Kastler, F. Dötz, F. Meinardi, H. L. Anderson, D. Beljonne, F. Cacialli, P. Samorì, Adv. Funct. Mater. 2011, 21, 834–844.
    [43] A. Datar, R. Oitker, L. Zang, Chem. Commun. 2006, 0, 1649–1651.
    [44] G. De Luca, E. Treossi, A. Liscio, J. M. Mativetsky, L. M. Scolaro, V. Palermo, P. Samorì, J. Mater. Chem. 2010, 20, 2493–2498.
    [45] H.Tanaka, T. Ikeda, M. Takeuchi, K. Sada, S. Shinkai, T. Kawai, Acs Nano. 2011, 5, 9575–9582.
    [46] N. Bouchera, J. Leroyb, S. Sergeyevb, E. Pouzet b, V. Lemaurc, R. Lazzaronic, J. Cornilc, Y. H. Geertsb, M. Sferrazzaa, Syn. Metals. 2009, 159, 1319–1324.
    [47] C. Meyer, L. L. Cunff, M. Belloul, G. Foyart, Materials. 2009, 2, 499-513.
    [48] W. Chen, M. P. Nikiforov, S. B. Darling, Energy Environ. Sci, 2012, 5, 8045–8074.
    [49] U. S. Jeng, C.-H. Su, C.-J. Su, K.-F. Liao, W.-T. Chuang, Y.-H. Lai, J.-W. Chang, Y.-J. Chen, Y.-S. Huang, M.-T. Lee, K.-L. Yu, J.-M. Lin and D.-G. Liu, et al., J. Appl. Crystallogr, 2010, 43, 110–121
    [50] I. R. Fernando, G. Mezei, Inorg. Chem. 2012, 51, 3156-3160.
    [51 M. Mohankumar, M. Holler, M. Schmitt, J. P. Sauvage, J. F. Nierengarten, Chem. Commun. 2013, 49, 1261-1263.
    [52] A. Caballero, S. Bennett, C. J. Serpell, P. D. Beer, Cryst. Eng. Comm. 2013, 15, 3076-3081.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE