簡易檢索 / 詳目顯示

研究生: 周詩涵
Chou, Shih-Han
論文名稱: 同時達到SINR最大化及能量最小化之多目標預編碼及等化器共同設計技術於多輸入多輸出正交分頻多工系統
Multiobjective Design for Joint Precoding and Equalization of MIMO OFDM Systems with simultaneous SINR Maximization and Power Consumption Minimization
指導教授: 陳博現
Chen, Bor-Sen
口試委員: 洪樂文
Hong, Yao-Win
翁詠祿
Ueng, Yeong-Luh
吳仁銘
Wu, Jen-Ming
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 41
中文關鍵詞: 正交分頻多工系統多目標最佳化問題多目標演化算法多輸入多輸出訊號相對於干擾和雜訊比能量消耗服務質量
外文關鍵詞: MOEA, SINR
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多輸入多輸出(MIMO)正交頻分複用(OFDM)技術在多路徑衰落的寬帶無線通道上擁有傳輸高數據速率,但是其對時間和頻率同步誤差非常敏感,導致信道間干擾(ICI)產生。這種現象會導致多輸入多輸出的正交頻分複用系統中的服務質量(QoS)的性能下降。
    該研究提出了一種有效率的多目標設計方法,利用適當選擇預編碼矩陣,通過最大化訊號相對於干擾和雜訊比之值來優化服務質量性能以及最小化能量消耗來達到最佳的能量效率在多輸入多輸出的正交頻分複用的系統上。多目標預編碼設計被轉換為等效線性矩陣不等式(LMIs)的多目標最佳化問題(MOP),利用提出的線性矩陣不等式限制多目標演化算法(MOEA)可以保證凸度和總體收斂。由於多目標演化算法可以提供一組Pareto最佳解,我們可以在多輸入多輸出的正交頻分複用系統中選擇一種可以達到最小均方誤差(MMSE)的解決方案作為選擇預編碼設計的方法。最後,模擬結果說明設計過程也同時證實多輸入多輸出的正交頻分複用系統提出的多目標預編碼方法的性能。


    Multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) techniques can allow the transmission of high data rates over broadband wireless channels subject to multipath fading, but they are however very sensitive to time and frequency synchronization errors giving rise to inter-channel interference (ICI). This phenomenon causes the performance degradation of the quality of service (QoS) in MIMO OFDM systems.
    In this study, we propose an efficient multiobjective design method by maximizing the SINR value for optimal QoS performance and minimizing power consumption for optimal power efficiency of MIMO OFDM systems simultaneously through a proper selection of a precoding scheme. The multiobjective precoding design is transformed to an equivalent linear matrix inequalities (LMIs)-constrained multiobjective optimization problem (MOP), which could be easily solved by a proposed LMIs-constrained multiobjective evolution algorithm (MOEA) to guarantee the convexity and global convergence. Since the MOEA can provide a set of Pareto optimal solutions, one solution which can also achieve the minimum mean square error (MMSE) equalization is selected as the preferable precoding design in MIMO OFDM systems. Finally, simulation examples are given to illustrate the design procedure and to confirm the performance of the proposed multiobjective precoding scheme of MIMO OFDM systems.

    摘要 ii Abstract iii 致謝 iv 1 Introduction 1 2 System Modeling 6 3 Multiobjective Precoding Scheme Of MIMO OFDM Systems 11 4 LMI-Constrained MOEA Algorithm for Multiobjective Precoding Design 16 5 Multiobjective Optimization Precoding Design with Least MMSE Equalization 20 6 Simulation Results 23 7 Conclusion 34 A Appendix 35 References 39

    [1] S. Noh, Y. Sung, and M. D. Zoltowski, “A new precoder design for blind channel
    estimation in mimo-ofdm systems,” IEEE Transactions on Wireless Communications,
    vol. 13, no. 12, pp. 7011–7024, 2014.
    [2] Y. Jin and X.-G. Xia, “A robust precoder design based on channel statistics for
    mimo-ofdm systems with insufficient cyclic prefix,” IEEE transactions on communications,
    vol. 62, no. 4, pp. 1249–1257, 2014.
    [3] A. Goldsmith, Wireless communications. Cambridge university press, 2005.
    [4] Z. Liu, Y. Xin, and G. B. Giannakis, “Linear constellation precoding for ofdm with
    maximum multipath diversity and coding gains,” IEEE Transactions on Communications,
    vol. 51, no. 3, pp. 416–427, 2003.
    [5] Z. Wang and G. B. Giannakis, “Wireless multicarrier communications,” IEEE signal
    processing magazine, vol. 17, no. 3, pp. 29–48, 2000.
    [6] Z. Wang and G. B. Giannakis, “Complex-field coding for ofdm over fading wireless
    channels,” IEEE Transactions on Information Theory, vol. 49, no. 3, pp. 707–
    720, 2003.
    [7] R. Van Nee, G. Awater, M. Morikura, H. Takanashi, M. Webster, and K. W. Halford,
    “New high-rate wireless lan standards,” IEEE Communications Magazine,
    vol. 37, no. 12, pp. 82–88, 1999.
    [8] A. Petropulu, R. Zhang, and R. Lin, “Blind ofdm channel estimation through simple
    linear precoding,” IEEE Transactions on Wireless Communications, vol. 3,
    no. 2, pp. 647–655, 2004.
    [9] Z. Ding, T. Ratnarajah, and C. F. Cowan, “Hos-based semi-blind spatial equalization
    for mimo rayleigh fading channels,” IEEE Transactions on Signal Processing,
    vol. 56, no. 1, pp. 248–255, 2008.
    [10] L. Sarperi, X. Zhu, and A. K. Nandi, “Blind ofdm receiver based on independent
    component analysis for multiple-input multiple-output systems,” IEEE Transactions
    on Wireless Communications, vol. 6, no. 11, 2007.
    [11] D. Wulich and L. Goldfeld, “Reduction of peak factor in orthogonal multicarrier
    modulation by amplitude limiting and coding,” IEEE Transactions on Communications,
    vol. 47, no. 1, pp. 18–21, 1999.
    [12] B.-S. Chen, C.-Y. Yang, and W.-J. Liao, “Robust fast time-varying multipath
    fading channel estimation and equalization for mimo-ofdm systems via a fuzzy
    method,” IEEE Transactions on vehicular technology, vol. 61, no. 4, pp. 1599–
    1609, 2012.
    [13] T.-J. Ho and B.-S. Chen, “Robust minimax mse equalizer designs for mimo wireless
    communications with time-varying channel uncertainties,” IEEE Transactions
    on Signal Processing, vol. 58, no. 11, pp. 5835–5844, 2010.
    [14] A. J. Al-Dweik, “A novel non-data-aided symbol timing recovery technique for
    ofdm systems,” IEEE Transactions on Communications, vol. 54, no. 1, pp. 37–40,
    2006.
    [15] G. Santella, “A frequency and symbol synchronization system for ofdm signals:
    architecture and simulation results,” IEEE Transactions on vehicular Technology,
    vol. 49, no. 1, pp. 254–275, 2000.
    [16] Q. Zhu and Z. Liu, “Minimum interference blind time-offset estimation for ofdm
    systems,” IEEE transactions on wireless communications, vol. 5, no. 8, pp. 2136–
    2142, 2006.
    [17] W.-L. Chin and S.-G. Chen, “A blind synchronizer for ofdm systems based on
    sinr maximization in multipath fading channels,” IEEE Transactions on Vehicular
    Technology, vol. 58, no. 2, pp. 625–635, 2009.
    [18] O. Popescu and D. C. Popescu, “On the performance of sub-band precoded ofdm
    in the presence of narrowband co-channel interference,” IEEE Transactions on
    Broadcasting, vol. 62, no. 3, pp. 736–743, 2016.
    [19] R. Lin and A. P. Petropulu, “Linear precoding assisted blind channel estimation
    for ofdm systems,” IEEE Transactions on Vehicular Technology, vol. 54, no. 3,
    pp. 983–995, 2005.
    [20] R. T. Marler and J. S. Arora, “The weighted sum method for multi-objective optimization:
    new insights,” Structural and multidisciplinary optimization, vol. 41,
    no. 6, pp. 853–862, 2010.
    [21] J.-h. Ryu, S. Kim, and H. Wan, “Pareto front approximation with adaptive weighted
    sum method in multiobjective simulation optimization,” in Winter Simulation Conference,
    pp. 623–633, Winter Simulation Conference, 2009.
    [22] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective
    genetic algorithm: Nsga-ii,” IEEE transactions on evolutionary computation,
    vol. 6, no. 2, pp. 182–197, 2002.
    [23] B. Suman, “Study of self-stopping pdmosa and performance measure in multiobjective
    optimization,” Computers & chemical engineering, vol. 29, no. 5,
    pp. 1131–1147, 2005.
    [24] B. Suman and P. Kumar, “A survey of simulated annealing as a tool for single and
    multiobjective optimization,” Journal of the operational research society, vol. 57,
    no. 10, pp. 1143–1160, 2006.
    [25] A. Abraham and L. Jain, “Evolutionary multiobjective optimization,” in Evolutionary
    Multiobjective Optimization, pp. 1–6, Springer, 2005.
    [26] J. Branke, K. Deb, H. Dierolf, and M. Osswald, “Finding knees in multi-objective
    optimization,” in Parallel problem solving from nature-PPSN VIII, pp. 722–731,
    Springer, 2004.
    [27] K. Deb and M.-o. O. U. E. Algorithms, “vol. 16,” 2001.
    [28] Y. S. Cho, J. Kim, W. Y. Yang, and C. G. Kang, MIMO-OFDM wireless communications
    with MATLAB. John Wiley & Sons, 2010.
    [29] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities
    in system and control theory. SIAM, 1994.
    [30] C. F. Wu, B.-S. Chen, and W. Zhang, “Multiobjective investment policy for nonlinear
    stochastic financial system: Fuzzy approach,” IEEE Transactions on Fuzzy
    Systems, 2016.
    [31] K. B. Petersen, M. S. Pedersen, et al., “The matrix cookbook,” Technical University
    of Denmark, vol. 7, p. 15, 2008.
    [32] Y. Sun, D. W. K. Ng, J. Zhu, and R. Schober, “Multi-objective optimization for
    robust power efficient and secure full-duplex wireless communication systems,”
    IEEE Transactions on Wireless Communications, vol. 15, no. 8, pp. 5511–5526,
    2016.

    QR CODE