簡易檢索 / 詳目顯示

研究生: 詹其樺
Chan, Chi-Hua
論文名稱: 一些邊界值含eigenparameter的向量型Sturm-Liouville方程式固有值問題的研究
Some eigenvalue problems for vectorial Sturm-Liouville equations with eigenparameter dependent boundary conditions
指導教授: 沈昭亮
Shen, Chao-Liang
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 29
中文關鍵詞: 固有值
外文關鍵詞: eigenvalue problems
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • We investigate the two-dimensional vectorial Sturm-Liouville
    equation with eigenparameter dependent boundary conditions. Under the assumption that Q(x) is nonnegative definite, we prove that the eigenvalues of the two-dimensional vectorial Sturm-Liouville equation are real, and the algebraic multiplicity of an eigenvalue of the problem as a zero of the characteristic function is equal to its geometric multiplicity.
    By the theory of Hadamard's factorization, we also prove that the characteristic function is uniquely determined by the spectral set of the equation. Moreover, we consider the inverse problem of the equation that how many spectral sets can determine the potential function Q(x) uniquely, and find that three spectral sets is necessary for us to determine the potential function Q(x) uniquely..


    Abstract............................................3 1.Introduction......................................4 2.Preliminaries.....................................8 3.Another approach to Hochstadt's results..........10 4.The vectorial Hochstadt's problem................15 5.Two-dimensional vectorial Hochstadt's problem....16

    1.Ahlfors L V 1979
    Complex Analysis(New York: McGraw-Hill)
    2.Gesztesy F and Simon B 2000
    A new approach to the inverse spectral theory, II. General real potentials and the connection to the spectral measure
    Annals of math 152 593-643
    3.Hochstadt H 1967
    On the inverse problems associated with second-order differential operators
    Acta Mathematica 119 173-192
    4.Mason J C and Handscomb D C 2003
    Chebyshev Polynomials(New York: CRC)
    5.Poschel J and Trubowitz E 1987
    Inverse Spectral Theory(New York: Academic)
    6.Shen C-L 2001
    Some inverse spectral problems for vectorial Sturm-Liouville equations
    Inverse Problems 17 1253-1294
    7.Simon B 1999
    A new approach to the inverse spectral theory, I. Fundamental formalism
    Annals of math 150 1029-1057

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE