研究生: |
吉宗驥 Chi, Chong-Chi |
---|---|
論文名稱: |
以新製程法合成L10相鐵白金/奈米碳管層奈米粒子以及奈米碳管層如何影響其中L10鐵白金結構之探討 Investigation of L10FePt nanoparticles encapsulated into carbon nanotubes with a novel synthesis method. |
指導教授: |
歐陽浩
Ouyang, Hao |
口試委員: |
賴志煌
Lai, Chih-Huang 張晃暐 Chang, Huang-Wei 邱顯浩 Chiou, Shan-Haw 徐文光 Hsu, Wen-Kuang |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 196 |
中文關鍵詞: | 鐵白金奈米粒子 、奈米碳管 、電子束照射 |
外文關鍵詞: | FePt nanoparticle, carbon nanotube, electron irradiation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗結合電子束蒸鍍與爐管製成,發現新的方式合成L10FePt/Carbon nanotube core/shell nanoparticle. 有別於以往製作鐵白金奈米粒子需要昂貴的鐵及白金前驅物,本次實驗使用價格經濟的鐵烯作為前驅物,同時將鐵烯作為鐵源和碳源,配合事先鍍好白金的基板,在爐管中反應後即可得到L10FePt/Carbon nanotube core/shell nanoparticle。此方法別於以往先長好鐵白金再將鐵白金當作催化劑生長碳管,也別與長好鐵白金奈米粒子後再和碳管混合;此方法可以一步直接得到L10FePt奈米粒子包覆在奈米碳管中。
分析奈米碳管中的鐵白金結構可以發現奈米碳管會壓縮其中的鐵白金,使其擁有較低的c/a ratio。同時元素比例分析結果配合高解析度穿透式電子顯微鏡影像分析顯示就算鐵與白金的元素比例離開了L10FePt相的邊界,外層的奈米碳管仍然會把其中的鐵白金結構維持在L10相的face center tetragonal結構而不是變成L12相的face center cubic結構。由此可看出碳管層包覆在外層可以幫助L10FePt序化。第二部分則是探討電子束照射對碳管層包覆的鐵白金奈米粒子的影響。實驗發現有碳管層包覆在外時,電子束照射會導致內核的鐵白金奈米粒子相變化,從L10FePt變成L12FePt3,也可以由L12Fe3Pt相轉變L10FePt。若外層沒有碳管層包覆,則是轉變成A1無序相。
本次實驗貢獻主要是發現新的方式合成L10FePt/Carbon nanotube core/shell nanoparticles 以及發現新的碳管層幫助鐵白金序化機制。
L10FePt, face center tetragonal structure with c/a ratio 0.964 and stoichiometry Fe100-xPtx (x=40-60), known as a ferromagnetic alloy with large uniaxial magneto-crystalline anisotropy and high coercivity, is successfully encapsulated in multi-walled carbon nanotubes (MWCNT). This synthetic method is a combined technique employing catalytic pyrolysis and electron beam deposition.
In this study, MWCNT can intensify the formation of L10 phase with smaller c/a ratio even the Fe/Pt ratio deviated from regular L10 FePt phase. Beside, locations of precursor will affect the reaction rate, causing different products eventually. Samples collected from varied locations of furnace show various crystallographic phases and magnetic coercivities as evident by XRD, SQUID and TEM.
chapter 1 Reference
1.IEEE , Vol. 96, No. 11, November 2008
L10FePt
2.J. Wang et al. / Journal of Magnetism and Magnetic Materials 345 (2013) 165–17
3.First-principles investigations of multimetallic transition metal clusters
4.IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 2, FEBRUARY 2005
Appl. Phys. Lett. 80, 2583 (2002)
5.IEEE TRANSACTIONS ON MAGNETICS, VOL. 37, NO. 4, JULY 2001
6.J. Phys. D: Appl. Phys. 43 (2010) 474013
7.AIP ADVANCES 6, 085302 (2016)
8.Compos Sci Technol, 62 (2002), pp. 1993-1998
9.J Polym Sci B, 42 (2004), pp. 2286-2293
10.Computational Materials Science Volume 22, Issues 3–4, December 2001, Pages 180-184
11.Composites Science and Technology Volume 166, 29 September 2018, Pages 125-130
12.Science, 287 (2000), pp. 637-640
13.Composites Science and Technology Volume 68, Issues 7–8, June 2008, Pages 1644-1648
14.Compos Sci Technol, 63 (2003), pp. 1637-1646
15.M Knupfer - Surface science reports, 2001 , Electronic properties of carbon nanostructures
16.Energy Environ. Sci., 2014, 7,1919
17.Energy Environ. Sci.,2019, 12, 2924
18.IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 6, JUNE 2006
19.Synthetic Metals Volume 161, Issues 15–16, August 2011, Pages 1522-1526
20.Phys. Chem. Chem. Phys., 2015, 17, 2228-2234
21.Journal of Hazardous Materials186 (2011) 436
22.Nanotechnol. Environ. Eng. 4, 12 (2019)
23.Materials Science and Engineering: B Volume 261, November 2020, 114673
24.Surface Engineering Volume 36, 2020 - Issue 11, 1200-1209
25.Chemical Engineering Journal 385 (2020) 123396
26.Carbon Volume 177, 15 June 2021, Pages 189-198
27.JOURNAL OF RAMAN SPECTROSCOPY, VOL. 28, 369È372 (1997)
28.Carbon Volume 44, Issue 9, August 2006, Pages 1808-1820
29.Journal of Molecular Catalysis A: Chemical 310
30.Twenty-Third Symposium (International) on Combustion/The Combustion Institute, 1990/pp, 1581-1587
31.Thin Solid Films Volumes 398–399, November 2001, Pages 150-155
32.small.200500436
33.Phys.Chem.Chem.Phys.,2017, 19, 32079
34.Solid State Communications 149 (2009) 1619-1622
35.Solid State Communications 150 (2010) 311-315
36.J. Phys. Chem. C 2007, 111, 1200-1206
37.Eur. J. Inorg. Chem. 2017, 6–29
38.APPLIED PHYSICS LETTERS 94, 193107 2009
39.PRL 107, 185501 (2011)
chapter 2 Reference
1.[S.Iijima, nature, 354(1991),56.]
2.[Nantero]
3.[Plasma Engineering (Second Edition)
2018, Pages 365-453]
4.[Chem.Sci.,2016,7,3681–3688]
5.[1 JANUARY 1999 VOL 283 SCIENCE]
6.[Science Vol 270, Issue 5239 17 November 1995]
7.[Nature Communications volume 10, Article number: 3040 (2019)]
8.[PHYSICAL REVIEW B 65 235430]
9.[Science Advances 05 Feb 2016:Vol. 2, no. 2, e1500969]
10.[RSC Adv., 2016, 6, 26361–26373]
11.[Appl. Phys. Lett., Vol. 72, No. 8, 23 February 1998]
12.[Phys. Rev. Lett. 81, 4656]
13.[Science 11 Jan 2013:Vol. 339, Issue 6116, pp. 182-186]
14.[PROCEEDINGS OF THE IEEE, VOL. 91, NO. 11, NOVEMBER 2003]
15.[S. Iijima Nature, 354 (6348) (Nov. 1991), pp. 56-58]
16.[N. Arora, N.N. Sharma / Diamond & Related Materials 50 (2014) 135–150]
17.[www.clemson.edu/ces/lemt/Arc-Discharge.htm]
18.[Science, 273 (1996), pp. 483-487]
19.[Chem Phys Lett, 243 (1995), pp. 49-54]
20.[E.T. Thostenson, Z.F. Renb and T.W. Choua Compos Sci Technol, 61 (2001), pp. 1899-1912]
21.[Carbon, 44 (2006), pp. 1624-1652]
22.[Energy Environ. Sci.,2019, 12, 2924]
23.[https://Sites.google.com/site/cntcomposites/production-methods.]
24.[Chem Phys Lett, 313 (1999), pp. 91-97]
25.[Solid State Commun, 107 (1998), pp. 597-606]
26.[Carbon Nanotube Synthesis and Growth Mechanism Mukul Kumar]
27.[Nano Lett., Vol. 7, No. 3, 2007]
28.[CARBON49 (2011) 3316–3324]
29.[J. Cheng et al. / Solid State Communications 149 (2009) 16191622]
30.[A. Moisala et al. / Chemical Engineering Science 61 (2006) 4393 – 4402]
31.[Chemical Engineering Science 65 (2010) 2965-2977]
32.[Crystal Research and Technology, 51: 466-474.2016]
33.[Nano Letters 2003, 3, 4, 565-568]
34.[Energy Environ. Sci., 2011, 4, 4954-4961]
35.[ACS Nano 2019, 13, 10631−10642]
36.[Hindawi Publishing Corporation Journal of Nanomaterials Volume 2014, Article ID 989672]
37.[Science 26 May 2006: Vol. 312, Issue 5777, pp. 1199-1202]
38.[nature materials | VOL 6 | OCTOBER 2007]
39.[Nano Lett., Vol. 4, No. 6, 2004]
40.[ PHYSICAL REVIEW B, VOLUME 65, 165423]
41.[nature materials | VOL 6 | OCTOBER 2007
42.[NATURE · VOL 382 · 1 AUGUST 1996]
43.[PRL 101, 156101 (2008)]
44.[Philosophical Magazine, 88:18-20, 2725-2]
45.[Journal of Magnetism and Magnetic Materials 267 (2003) 248]
46.[J. Wang et al. / Acta Materialia 91 (2015) 41–49]
47.[Applied Surface Science 509 (2020) 14533]
48.[J. Phys. D: Appl. Phys. 53 (2020) 135002]
49.[J. Phys.: Condens. Matter 33 (2021) 104003]
50.[L. Zhang et al. / Journal of Magnetism and Magnetic Materials 322 (2010) 2658–2664]
51.[J. Appl. Phys., Vol. 87, No. 9, 1 May 2000]
52.[APPLIED PHYSICS LETTERS 98, 101911 2011]
53.[Nanoscience and Nanotechnology Letters, Volume 8, Number 3, March 2016, pp. 260-265]
54.[APPLIED PHYSICS LETTERS 100, 261909 (2012)]
55.[Science 26 May 2006: Vol. 312, Issue 5777, pp. 1199-1202]
56.[J. Phys. Chem. B 2003, 107, 5419-5425]
57.[Adv. Mater. 2006, 18, 393–403]
58.[J Nanopart Res (2011) 13:3191–3197]
59.[Appl. Phys. Lett. 94, 193107 2009]
60.[J. Mater. Chem., 2012, 22, 14149]
61.[PRL 107, 185501 (2011)]
[62]P. Hohenberg and W. Kohn, Phys. Rev. 136 (1964) B864.
[63]W. Kohn and L. J. Sham, Phys. Rev. 140 (1965) A1133.
[64]J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
[65]D. R. Hamann, M. Schluter, and C. Chiang, Phy. Rev. Lett. 43 (1979) 1494.
[66]M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Reviews of Modern Physics, Vol. 64, No. 4, 1045 (1992).
[67]F. S. Ham and B. Segall, Phys. Rev. 124 (1961) 1786.
[68]M. Methfessel, and M. Van Schilfgaarde, Phys. Rev. B, 48 (1993) 4937.
[69]G. A. Sai-Halasz, L. Esaki, and W. A. Harrison, Phys. Rev. B 18 (1978) 2812.
[70]Charles Kittel, Introduction to Solid State Physics, John Wiley and Sons (2005).
[71]The guide of VASP, can be retrieved from:http://cms.mpi.univie.ac.at/VASP/ , written by Georg Kresse and Jürgen Furthmüller.
[72]G. Kresse and J. Furthmuller, Phys. Rev. B 54 (1996) 11169.
[73]D. Vanderbilt, Phys. Rev. B, 41 (1990) 7892.
[74]C. G. Bmyden, Math. Comput 19 (155) 577.
[75]P. Pulay, Chem. Phys. Lett. 73 (1980) 393
[76]D. D. Johnson, Phys. Rev. B38, 12 (1988) 87.
[77]In general the Kohn-Sham energy functional for an ultrasoft (US) Vanderbilt pseudopotential (PP) can be written as [25-271].
[78]N. W. Ashcroft and N. D. Mermin, Solid state physics, Saunders College Publishing (1976).
[79]M. P. Marder, Condensed matter physics, John Wiley and Sons (2000).
[80]江進福, 物理雙月刊, 廿三卷五期, P549-553 (2001)
[81]L. H. Thomas, "The calculation of atomic fields". Mathematical Proceedings of the Cambridge Philosophical Society 23 (1927) 542.
[82]E. Fermi, "Un Metodo Statistico per la Determinazione di alcune Prioprietà dell'Atomo". Rend. Accad. Naz. Lincei6 (1927) 602.
[83]E. Wigner, Transactions of the Faraday Society, 34 (1938) 0678.
[84]D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45 (1980) 566.
[85]S. H. Vosko, J. P. Perdew, and A. H. Macdonald, Phy. Rev. Lett. 35 (1975) 1725.
[86]A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52 (1995) R5467.
chapter 3 Reference
1.[ems java version V4 JEMS-SWISS, Dr. P. Stadelmann Chemin Rouge 15 CH-1805 Jongny Switzerland)]
2.[M. C. Payne et al. : Abinitio iterative minimization techniques]
3.[材料的設計、模擬與計算, CASTEP 的原理及其應用/陳志謙等著.]
chapter 4 Reference
1.[Crystal Research and Technology, 51: 466-474.2016]
2.[Nano Letters 2003, 3, 4, 565-568]
3.[PRL 107, 185501 (2011)]
4.[PRL 101, 156101 (2008)]
5.[Science 26 May 2006: Vol. 312, Issue 5777, pp. 1199-1202]
6.[F. Banhart et al. / Chemical Physics Letters 269 (1997) 349-355]
7. PHYSICAL REVIEW B 81, 094437 ,2010