研究生: |
李柏均 Lee, Po-Chun |
---|---|
論文名稱: |
不同高強度間歇運動模式的強度反應 Exercise intensity responses during different high-intensity interval exercise modes |
指導教授: | 林貴福 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 28 |
中文關鍵詞: | 運動強度 、運動時間 、反覆次數 |
外文關鍵詞: | Exercise intensity, Exercise time, Exercise bout |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討等運動時間不同高強度間歇運動模式的強度反應及差異。以10名具運動經驗的健康男性大學生為受試對象,利用單車測功計為工具,實施漸增負荷最大努力運動測驗,以及單次不同高強度間歇運動模式,分別為T1模式:全力衝刺踩踏運動30秒,間隔動態休息270秒,計4次反覆;T2模式:全力衝刺踩踏運動15秒,間隔動態休息135秒,計8次反覆。採平衡次序方式執行不同實驗處理,每項實驗處理均間隔二天以上,包括安靜心跳率(HRrest)及最大心跳率(HRmax);二種單次高強度間歇運動模式運動期心跳率;以及一次自選配速持續20分鐘踩踏測驗的心跳率。全程以Polar心率錶紀錄心跳率反應,據以定義運動強度;所得資料以重複量數二因子變異數分析法(two-way ANOVA),檢定不同高強度間歇運動模式及不同間歇運動衝刺階段的強度差異,統計顯著水準訂為α=.05。結果顯示自選配速、T1模式及T2模式的平均強度分別為38±7% HRR、65±7% HRR及69±5% HRR;最大強度分別為46±10% HRR、94±9% HRR)與88±4% HRR。三種運動模式的強度反應並無顯著差異(平均強度F=1.98;最大強度F=2.72, p>.05);但自覺努力程度具交互作用(F=11.16, p<.05)。比較T1模式與T2模式運動階段輸出功率,顯示平均功率(624.49±70.23 W;685.99±78.46 W)、最大功率(723.37±85.78 W;777.21±87.19 W)及總輸出功率(2497.98±280.93 W;2743.94±313.84 W)等,T2模式均大於T1模式。本研究發現相同運動時間的二種間歇運動模式,運動過程的強度反應並無差異,但在自覺努力程度及輸出功率表現上,則以T2模式為佳。至於T2模式是否可獲致較佳的運動訓練效果,則有待進一步研究。
The purpose of this study was defined the exercise intensity during different high-intensity interval exercise (HIIE), on total equally exercise time. Ten had exercise experience college male were participates in this study. The approaching was use counter balance to finished the HIIE trial 1(T1) mode (sprint 30-sec separately by 270-sec for 4 bouts); the HIIE trial 2(T2) mode (sprint 15-sec separately by 135-sec for 8 bouts), and one self-select continues 20-min pedaling test (CON). The rest heart rate, (HRrest), maximal heart rate (HRmax), and the heart rate during each trial were record by polar s810i heart rate monitor to identified exercise intensity. All tests were separate at least two days. Data analysis use two-way ANOVA observed interaction between exercise modes and exercise period, significant level set at α=.05. Results showed there have interaction on rating of perceived exertion (RPE) responses between three trials (F=11.16, p<.05), but no interaction between CON (38±7%;46±10%), T1 mode (65±7%;94±9%), and T2 mode (69±5%;88±4%) trials on mean (F=1.98, p>.05) and maximal (F=2.72, p>.05) heart rate reserve (%HRR). Furthermore, T2 mode were showed significantly greater than T1 mode on mean work output (624.49±70.23 W; 685.99±78.46 W), maximal work output (723.37±85.78 W; 777.21±87.19 W), and total work output (2497.98±280.93 W; 2743.94±313.84 W). This study show heart rate has no different during HIIE, but T2 mode is greater on RPE response and work output than T1 mode. In equal exercise time, there were more benefits like exercise progressive or work output, setting shorter exercise time and more bouts is recommend during HIIE (ex. T2 mode). However, whether T2 modes will have better training effects still need further study.
行政院體育委員會(2009)。運動城市調查。台北市:行政院體育委員會。
朱真儀、林貴福(2006)。自選運動強度的生心理效果分析。運動生理暨體能學報,4,頁1-12。
朱真儀、盧淑雲、劉錦謀、林貴福(2007)。檢定不同運動情境之自選強度、平均速度、自覺努力程度及心情指數差異。2007國際運動生理與體能領域學術研討會論文集,頁74-74.
American College of Sports Medicine. (2010). ACSM’s guidelines for exercise testing and prescription (8th ed). Philadelphia (PA): Lippincott Williams & Wilkins.
Burgomaster, K. A., Cermak, N. M., Phillips, S. M., Benton, C. R., Bonen, A., & Gibala, M. J. (2007). Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology, 292(5), 1970-1976.
Burgomaster, K. A., Heigenhauser, G. J. F., & Gibala, M. J. (2006). Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. Journal of Applied Physiology, 100(6), 2041-2047.
Burgomaster, K. A., Howarth, K. R., Phillips, S. M., Rakobowchuk, M., MacDonald, M. J., McGee, S. L., et al. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. Journal of Physiology, 586(1), 151-160.
Burgomaster, K. A., Hughes, S. C., Heigenhauser, G. J. F., Bradwell, S. N. & Gibala, M. J. (2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. Journal of Applied Physiology, 98(6), 1985-1990.
Esfarjani, F., & Laursen, P. B. (2007). Manipulating high-intensity interval training: Effects on VO2max, the lactate threshold and 3000 m running. Journal of Science and Medicine in Sport, 10(1), 27-35.
Gibala, M. J., & McGee, S. L. (2008). Metabolic adaptations to short-term high-intensity interval training: A little pain for a lot of gain? Exercise and Sport Sciences Reviews, 36(2), 58-63.
Gibala, M. J. (2007). High-intensity interval training: A time-efficient strategy for health promotion? Current Sports Medicine Reports, 6(4), 211–213.
Guiraud, T., Juneau, M., Nigam, A., Gayda, M., Meyer, P., Mekary, S., et al. (2009). Optimization of high intensity interval exercise in coronary heart disease. European Journal of Applied Physiology, 108(4), 733-740.
Hargreaves, M., Mckenna, M. J., Jenkins, D. G., Warmington, S. A., Li, J. L., Snow, R. J., et al. (1998). Muscle metabolites and performance during high-intensity, intermittent exercise. Journal of Applied Physiology, 84(5), 1687-1691.
Hill, D. W., & Rowell, A. L. (1997). Responses to exercise at the velocity associated with VO2max. Medicine and Science in Sports and Exercise, 29(1), 113-116.
Laursen, P. B., & Jenkins, D. G. (2002). The scientific basis for high-intensity interval training: Optimising training programmes and maximising performance in highly trained endurance athletes. Sports Medicine, 32(1), 53-73.
Laursen, P. B., Shing, S. M., Peake, J. M., Coombes, J. S., & Jenkins, D. G.(2005). Influence of high-intensity interval training on adaptations in well-trained cyclists. Journal of Strength and Conditioning Research, 19(3), 527-533.
Nasis, I. G., Vogiatzis, I., Stratakos, G., Athanasopoulos, D., Koutsoukou, A., Daskalakis, A., et al. (2009). Effects of interval-load versus constant-load training on the BODE index in COPD patients. Respiratory Medicine, 103(9), 1392-1398.
Nemoto, K. I., Hirokazu, G. N., Masuki, S., Okazaki, K., & Nose, H. (2007). Effects of high-intensity interval walking training on physical fitness and blood pressure in middle-aged and older people. Mayo Clinic Proceedings, 82(7), 803-811.
Nybo, L., Sundstrup, E., Jakobsen, M. D., Mohr, M., Hornstrup, T., Simonsen, L., et al. (2010). High-intensity training versus traditional exercise interventions for promoting health. Medicine & Science in Sports & Exercise, 42(10), 1951-1958.
O’Brien, B. J., Wibskov, J., Knez, W. L., Paton, C. D., & Harvey, J. T. (2008). The effects of interval-exercise duration and intensity on oxygen consumption during treadmill running. Journal of Science and Medicine in Sport, 11(3), 287-290.
Perry, C. G. R., Heigenhauser, G. J. F., Bonen, A., & Spriet, L. L. (2008). High-intensity aerobic interval training increase fat and carbohydrate metabolic capacities in human skeletal muscle. Applied Physiology, Nutrition, and Metabolism, 33(6), 1112-1123.
Rozenek, R., Finato, K., Kubo, J., Hoshikawa, M., & Matsuo, A. (2007). Physiological responses to interval training sessions at velocities associated with Vo2max. Journal of Strength and Conditioning Association, 21(1), 188-192.
Sartor, F., deMorree, H. M., Matschke, V., Marcora, S. M., Milousis, A., Thom, J. M., et al. (2010). High-intensity exercise and carbohydrate-reduced energy-restricted diet in obese individuals. European Journal of Applied Physiology, 110(5), 893-903.
Smith, T. P., McNaughton, L. R., & Marshall, K. J. (1999). Effects of 4-wk training using Vmax/Tmax on VO2max and performance in athletes. Medicine and Science in Sports and Exercise, 31(6), 892-896.
Tabata, I., Irisawa, K., Kouzaki, M., Nishimura, K., Ogita, F., & Miyachi, M. (1997). Metabolic profile of high intensity intermittent exercises. Medicine and Science in Sports and Exercise, 29(3), 390-395.
Talanian, J. L., Galloway, S. D. R., Heigenhauser, G. J. F., Bonen, A., & Spriet, L. L. (2006). Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. Journal of Applied Physiology, 102(4), 1439-1447.
TjØnna, A. E., Lee, S. g J., Rognmo, O. V., Stolen, T., Bye, A., Haram, P. M., et al. (2008). Aerobic interval training vs. continuous moderate exercise as a treatment for the metabolic syndrome- a pilot study. Circulation, 118(4), 346-354.
Weber, C. L., & Schneider, D. A. (2002). Increases in maximal accumulated oxygen deficit after high-intensity interval training are not gender dependent. Journal of Applied Physiology, 92(5), 1795-1801.
Whyte, L. J., Gill, J. M. R., & Cathcart, A. J. (2010). Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism Clinical and Experimental, 59(10), 1421-1428.