簡易檢索 / 詳目顯示

研究生: 許町州
Hsu, Ting-Chou
論文名稱: 薛丁格方程的Hamilton-Jacobi解法
The Hamilton-Jacobi Method Applied to the Schrodinger Equation
指導教授: 陳樹杰
口試委員: 石至文
高淑蓉
陳樹杰
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 13
中文關鍵詞: 薛丁格
外文關鍵詞: Hamilton-Jacobi, Schrodinger
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 薛丁格方程的canonical formulation 在real symplectic space上被建構完成,則相對應的Hamilton-Jacobi equation 即可得到;接著再用Hamilton-Jacobi method將薛丁格方程的解解出。


    On a real symplectic space, the canonical formulation of the Schrodinger equa-
    tion is built, thereafter the associated Hamilton-Jacobi equation is established. The
    Schrodinger equation is thus solved by the Hamilton-Jacobi method.

    1 Introduction 2 Background knowledge 2.1 Canonical formulation in 2n-dimensional symplectic space 2.2 Canonical formulation for in nite-dimensional symplectic vector space 3 Canonical formulation of the Schrodinger equation 4 Solving the Schrodinger equation by a symplectic diffeomorphism 5 Solving the Schrodinger equation by Hamilton-Jacobi method 6 Conclusion 7 Reference

    [1] H. Goldstein, Classical Mechanics, 2nd edition, Addison-Wesley, 1980.
    [2] C. M. Leech, The Hamilton-Jacobi equation applied to continuum, Trans. ASME Vol.
    64, 658-663, 1997.
    [3] J.E. Marsden and T.S. Ratiu, Introductionto Mechanics and Symmetry, Springer Verlag,
    New York, 2nd edition, 1998.
    [4] D. Musicki, Canonical transformations and the Hamilton-Jacobi method in the eld
    theory, Publications de L'institut Mathematique, Nouvelle serie, tom 2, 21-34, 1962.
    [5] J. Parry, D. S. Salopek and J. M. Stewart, Solving the Hamilton-Jacobi equation for
    general relativity, Physical Review D, Vol. 49, 2872-2881, 1994.
    [6] G. Rosen, Hamilton-Jacobi functional theory for the integration of classical eld equations,
    International Journal of Theoretical Physics, Vol. 4, 281-285, 1971.
    [7] F. Schwabl, Quantum Mechanics, 2nd revised edition, Springer, 1995.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE