研究生: |
林明昌 Ming-Chang Lin |
---|---|
論文名稱: |
去除犧牲層之Air-Gap銅導線鑲嵌結構 Air-Gap Cu Damascene Structure by Removing Sacrificial Layer |
指導教授: |
葉鳳生
Fon-Shan Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 銅連接線 、鑲嵌結構 、空氣介電材料 、犧牲層 |
外文關鍵詞: | Cu interconnect, damascene, air-gap, sacrificial layer |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的目的有二。首先將整合犧牲層HSQ、擴散阻障層TaN、附著層Ta、銅之電化學電鍍、化學機械研磨等製造出銅導線鑲嵌結構;其次將利用微電子機械系統(MEMS)之技術在一介電材料覆蓋下剝除HSQ以製作出Air-gap結構,量測導線的電阻率並討論之。
犧牲層的部分,將HSQ(hydrogen silsesquioxane)與溶劑MIBK以2:1的比例混和後旋轉塗佈於蝕刻停止層氮化矽上,以350℃預烤3分鐘後形成之HSQ薄膜是很好的犧牲層材料。這是由於BOE溶液會從HSQ與其他介電材料間的介面開始蝕刻,而能方便而快速地剝起HSQ膜。100□厚的Ta與100□厚的TaN分別被用來當作附著層與擴散阻障層。在以銅之電化學電鍍填充溝槽後,以不傷害到樣品為原則,使用幾種不同的化學機械研磨參數以去除多餘的Cu/Ta/TaN膜,而完成銅導線鑲嵌結構。
接下來利用電漿輔助化學氣相沈積方式生長4000□氮化矽膜作為上方覆蓋的介電層,在氮化矽膜上沿著導線以CF4進行RIE開出長/寬為2.5μm/1.5倍導線線寬,間距為10μm之蝕刻窗口,其後以BOE溶液浸泡完成Air-gap銅導線鑲嵌結構。高解析度光學顯微鏡與SEM將被用來觀察此結構。
本實驗利用精密半導體參數分析儀HP 4156A配合探針座與導電式原子力顯微鏡(conductive AFM)兩種方式去量測電阻率,此兩種不同方式的量測結果將互相比較討論。
Two objectives are involved in the thesis. First, the fabrication of air-gap Cu damascene structure integrated with sacrificial layer HSQ, diffusion barrier TaN, adhesion layer Ta, electrochemical plating (ECP) of copper, and chemical mechanical polish (CMP) is demonstrated. Second, the air-gap formation by HSQ removal through a dielectric cap using MEMS technique is investigated, and the resistivity of copper lines is also studied.
HSQ with MIBK at ratio 2:1 was spun on etch stop layer SiNx. The HSQ film pre-baked at 350℃ for 3 minutes was a good sacrificial layer which could easily and quickly be removed from the interface with other dielectric materials by BOE solution treatment. 100□ Ta and 100□ TaN served as the adhesion and diffusion barrier layer, respectively. After trench filling by copper ECP, several CMP parameters were applied to remove unnecessary Cu/Ta/TaN without damaging the samples, and Cu damascene structure was done.
Then 4000□ SiNx deposited by PECVD was used as the dielectric cap. Etching windows with 1.5x line width / 2.5μm (window width / window length) on SiNx were formed by RIE with CF4 etchant and separated with 10μm along Cu damascene lines. The air-gap Cu damascene structure will be fabricated by BOE etching process. High resolution OM and SEM revealed the structure.
The resistivity of Cu lines was measured by HP 4156A with a probe station and Conductive AFM. The measurement results of the two approaches were discussed in the thesis.
[1] ITRS reports, “Interconect”, 2006 Update (http://www.itrs.net/)
[2] Peter Singer, “Tantalum, Copper and Damascene: The Future of Interconnects”, Semiconductor International, p.91. June 1998
[3] K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma, and Z. S. Yanovitskaya, “Low dielectric constant materials for microelectronics”, Journal of Applied Physics, vol. 93(11), p.8793-8841, 2003
[4] C. Lin, L. Clevenger, F. Schnabel, F. F. Jamin, and D. Dobuzinski, “Planarization of dual-damascene post-metal-CMP structures”, IITC, p.99-86, 1999
[5] C. Y. Chang, and S. M. Sze, “ULSI Technology”, McGraw-Hill, Chap. 8, 1996
[6] J. M. Steigerwald, S. P. Murarka, and R. J. Gutmann, “Chemical Mechanical Planization of Microelectronic materials”, John Wiley & Sons, Chap. 1, 1997
[7] K. M. Latt, L. Rong, W. G. Zhu, and Y. K. Lee, “Behaviour of ionized metal plasma deposited Ta diffusion barrier between Cu and SiO2”, J. Materials Sci., 37, 1941-1949, 2002
[8] W. H. Teh, “Investigation into performance of TaN diffusion barrier against copper diffusion using XRD”, Electronics Letters, 36(25), 2105-2106, 2000
[9] 黃士展, “TaSiN和TaSi在銅金屬製程上之擴散阻障層研究”, 國立清華大學碩士論文, 2001
[10] 陳忠賢, “銅/鉭基擴散障礙層與低介電係數材料之製程整合”, 國立清華大學博士論文, 2003
[11] L.G. Gosset, V. Arnal, C. Prindle, R. Hoofman, G. Verheijden, R. Daamen, L. Broussous, F. Fusalba, M. Assous, R. Chatterjee, J. Torres, D. Gravesteijn, and K.C. Yu, “General review of issues and perspectives for advanced copper interconnections using air gap as ultra-low K material”, Interconnect Technology Conference, 2003. Proceedings of the IEEE 2003 International
[12] J. Noguchi, K. Sato, N. Konishi, S. Uno, T. Oshima, K. Ishikawa, H. Ashihara, T. Saito, M. Kubo, T. Tamaru, Y. Yamada, H. Aoki, and T. Fujiwara, “Process and Reliability of Air-Gap Cu Interconnect Using 90-nm Node Technology”, IEEE Transactions on Electron Devices, vol. 52, p.352-359 , 2005
[13] P. A. Kohl, D. M. Bhusari, M. Wedlake, C. Case, F. P. Klemens, J. Miner, B. C. Lee, R. J. Gutmann, and R. Shick, “Air-Gaps in 0.3μm Electrical Interconnections”, IEEE ELECTRON DEVICE LETTERS, vol.21, NO.12, December 2000
[14] “IITC2007 airgaps & chip-stacks”, Solid State Technology Magazine, June 08 2007
[15] “IBM add airgaps for faster chips”, Solid State Technology Magazine, May 04 2007
[16] 許智凱, “錫覆蓋層/Air-gap銅導線鑲嵌結構電遷移研究”, 國立清華大學碩士論文, 2006
[17] 謝政良, “以HSQ為犧牲層之Air-gap銅導線之大馬士革製程整合”, 清華大學碩士論文, 2006
[18] C. C. Yang, and C. Chen, “The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing”, J. Mater. Chem., vol. 12, p.1138-1141, 2002
[19] 曾威鈞, “Air-gap銅導線製程整合和漏電流傳導機制”, 國立清華大學碩士論文(2005)
[20] J. P. Barber, E. J. Lunt, Z. A. George, D. Yin, H. Schmidt, and A. R. Hawkins, “Integrated Hollow Waveguides with Arch-Shaped Cores”, IEEE Photonics Technology Letters, Vol. 18, No. 1, Jan. 1, 2006