簡易檢索 / 詳目顯示

研究生: 陳玠甫
Chen, Chieh Fu
論文名稱: 鈷與無鉛Sn-3.5Ag銲錫固態介面反應分析
The interfacial reaction of Co/Solid-state Sn-3.5Ag Pb-free solder.
指導教授: 歐陽汎怡
Ouyang, Fan Yi
口試委員: 陳信文
Chen, Sinn Wen
王朝弘
Wang, Chao Hong
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 90
中文關鍵詞: 固態介面反應無鉛銲錫鈷錫系統
外文關鍵詞: Solid-state interfacial reaction, lead-free solder, Co-Sn
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在封裝製程中,擴散阻擋層能有效減緩銲錫劣化,提升接點壽命。在目前,主要以無電鍍鎳最為常見,因為在潤濕性、擴散阻擋能力以及成本上,鎳都有相當不錯的表現。然而在無電鍍鎳製程中有磷參雜,這會導致Ni3P的生成。Ni3P會導致接點脆化、劣化,使之失效。因此有人提出以鈷來作為取代,因為鈷具有鈷UBM錫間反應速率慢、高接點強度、良好的接點可靠度以及可接受的潤濕性。
    另一方面,錫-3.5銀合金銲錫在隨著含鉛銲錫的禁用之後,在特性上除了熔點接近傳統錫鉛銲錫,也具有更佳的彈性係數,更小的熱膨脹係數,逐漸成為銲錫的主要選項之一。且相較於純錫,銀在銲錫中的參雜,能夠減緩介金屬化合物生成速率以及降低反應活化能。
    本實驗討論無鉛錫-3.5銀銲錫介面,在150℃、170℃及190℃下固態時效處理後的變化行為。根據實驗結果,系統生成的介金屬化合物主要為CoSn3,但也有Ag3Sn以及介穩態的CoSn4的析出。在截面大多觀察到垂直表面生長的CoSn3,在銲錫與介金屬化合物接面上的CoSn3大多呈現破裂的片狀結構,Ag3Sn則有顆粒狀以及塊狀兩種形貌,CoSn4較多生成為塊狀析出物。反應時間在5-600小時之間所生的介金屬化合物厚度與時間成正相關。利用聚焦離子束在試片截面上進行標記,藉由標記移動情況,可知在鈷錫系統中,主要的擴散元素是錫,其速率明顯大於鈷。根據介金屬化合物生成厚度與反應時間關係做圖,發現在反應初期,介金屬化合物厚度未達臨界厚度,反應行為是介面控制反應,隨著反應時間增長、介金屬化合物厚度增加超過臨界厚度之後,則轉換為擴散控制反應。實驗結果顯示,在190℃固態時效處理下,介金屬化合物生成達到一定厚度之後,反應會轉換由擴散控制反應主導。但在介面控制反應與擴散控制反應之間,存有一個轉換區,該區域同時符合符合介面控制反應與擴散控制反應的厚度變化條件。透過觀察轉換區的標記位移情況來計算鈷、錫在190℃的狀況下在介金屬化合物中的擴散速率,結果分別為:1.60*10-13與2.11*10-12。透過時間與厚度的關係圖與阿瑞尼士方程式計算可得,在實驗條件下鈷錫系統介面反應控制區域生成介金屬化合物的反應活化能為122.47kJ/mole。
    在另一方面,透過推球測試來分析固態時效處理後對於接點性質的影響。相較於未經過熱處理的試片,接點的剪切強度下降,可能是因為銲錫中的銀析出形成Ag3Sn以及錫與鈷反應生成介金屬化合物,導致銲錫組成改變而造成機械性質改變。斷裂面觀察上,僅有在150℃長時間固態時效處理的部分接點在推球測試後出現同時具有脆性與延性的混和性斷裂,其餘斷裂面接點均為延性斷裂。推測在長時間固態時效處理時孔洞得以粗大化,導致該處形成應力集中,形成脆性斷裂。接點的斷裂面則與透過蝕刻液移除銲錫之後所觀察到的介金屬化合物相同,該處主要成份為CoSn4。


    Under bump metallization(UBM) is an important issue in packaging industry, because it directly effects the reliability and the life time of solder joint. To overcome the failure of solder joints by Ni3P in the Ni-P UBM, the Co-bases UBM becomes the substitute of the Ni-P UBM, because of the well diffusion-barrier capability, better reliability and acceptable solderability.
    On the other hand, the Sn-3.5Ag solder is the one of the replacement for lead-solder. Because the Sn-3.5Ag solder has the better elastic modulus and the lower coefficient of thermal expansion. The addition of Ag in solder can decrease the growth rate of intermetallic compounds (IMCs). For these reasons, the Sn-3.5Ag solder becomes the prefer options in packaging industry.
    In this study, we systematically investigated the solid-state interfacial reaction between the Sn-3.5Ag and the Co substrate through different aging time at temperature of 150℃, 170℃ and 190℃, respectively. Based on the results from XRD and EDX, CoSn3 , Ag3Sn and CoSn4 IMCs are formed in this system. The CoSn3 IMC layer grows thicker with longer reaction time and higher temperature. The kinetic analysis shows that the formation of CoSn3 is mainly control by the interfacial reaction in the beginning. When the thickness of CoSn3 over the critical region, the mechanism changed to diffusion control. The activation energy of CoSn3 is calculated to be 122.47kJ/mole. The diffusivity of Co and Sn in the IMC at 190℃ is 1.60*10-13 cm2/s and 2.11*10-12 cm2/s, respectively.
    The result of ball push test shows that the shear strength of solder joint decreased after solid-state aging. Most of the solder joints are the ductile fracture. Only 3 of the long-time solid-state aging solder joints showed both ductile fracture and brittle fracture. The coarsening of holes is the main reason to form the brittle fracture.

    目錄 中文摘要 -----------------------------------------------------------i 英文摘要 ---------------------------------------------------------iii 致謝---------------------------------------------------------------iv 目錄 ---------------------------------------------------------------v 圖目錄 -----------------------------------------------------------vii 表目錄 -------------------------------------------------------------x 第一章 簡介------------------------------------------------------1 第二章 文獻回顧--------------------------------------------------3 2.1 電子封裝技術簡介--------------------------------------3 2.1.1 電子封裝的內部連結技術----------------------------4 2.1.2 銲錫接點的結構------------------------------------5 2.1.3 擴散阻擋層----------------------------------------7 2.2 銲錫與金屬的反應--------------------------------------7 2.2.1 銅錫系統反應--------------------------------------8 2.2.2 鎳錫系統反應--------------------------------------9 2.2.3 鈷錫系統-----------------------------------------11 2.2.4 CoSn3成長速率控制--------------------------------15 2.3 銲錫材料---------------------------------------------16 2.3.1 銲銀銲錫-----------------------------------------17 2.3.2 鈷錫銀系統---------------------------------------20 2.4 動機-------------------------------------------------21 第三章 實驗方法-------------------------------------------------22 3.1 試片製備---------------------------------------------27 3.2 熱處理-----------------------------------------------27 3.3 蝕刻-------------------------------------------------28 3.4 推球測試---------------------------------------------28 3.5 結果分析---------------------------------------------29 3.5.1 掃描式電子顯微鏡---------------------------------29 3.5.2 能量彌散X射線譜---------------------------------29 3.5.3 電子微探儀---------------------------------------30 3.5.4 X 射線繞射分析-----------------------------------30 3.5.5 聚焦離子束---------------------------------------30 3.5.6 影像分析軟體-------------------------------------31 第四章 結果討論-------------------------------------------------32 4.1 初步反應試片形貌觀察---------------------------------32 4.2 介金屬化合物成分分析---------------------------------33 4.3 介金屬化合物形貌觀察---------------------------------42 4.4 介金屬化合物反應類型---------------------------------45 4.5 介金屬化合物成長速率與活化能-------------------------60 4.6 相對擴散量測與計算-----------------------------------62 4.7 推球測試結果-----------------------------------------68 4.7.1 推球測試斷裂面觀察-------------------------------68 4.7.2 剪切應力測試結果---------------------------------75 第五章 結論-----------------------------------------------------77 第六章 未來工作-------------------------------------------------79 參考文獻-----------------------------------------------------------80

    1. J.H. Lau, “Flip Chip Technologies”, McGraw-Hill, New York, (1996).
    2. M.W. Liang, T.-E. Hsieh, C.C. Chen and Y.T. Hung, “Electroless Copper/Nickel Films Deposited on AlN Substrates”, Jpn. J. Appl. Phys., 43 (2004), pp.8258-8266.
    3. K.C. Hung and Y.C. Chan, “Study of Ni3P Growth due to Solder Reaction Assisted Crystallization of Electroless Ni-P Metallization”, J. Mater. Sci. Lett., 19 (2000), pp.1755-1757.
    4. K. Chen, C. Liu, D.C. Whalley, D.A. Hutt, J.F. Li and S.H. Mannan, “A comparative study of the interfacial reaction between electroless Ni–P coatings and molten tin”, Acta Mater, 56 (2008), pp. 5668-5676.
    5. Y.C. Lin, J.G. Duh and B.S. Chiou, “Wettability of electroplated Ni-P in under bump metallurgy with Sn-Ag-Cu solder”, J Electron Mater, 35 (2006), pp. 7-14
    6. Y.C. Lin and J.G. Duh, “Effect of surfactant on electrodeposited Ni–P layer as an under bump metallization”, Alloy Comp, 439 (2007), pp. 74-80
    7. M.N. Islam, Y.C. Chan, A. Sharif and M.O. , “ Alam Comparative study of the dissolution kinetics of electrolytic Ni and electroless Ni–P by the molten Sn3.5Ag0.5Cu solder alloy”, Microelectron Reliab, 43 (2003), pp. 2031-2037
    8. M.N. Islam and Y.C. Chan, “Interfacial reactions of Sn–Cu solder with Ni/Au surface finish on Cu pad during reflow and aging in ball grid array packages”, Mater Sci Eng B, 117 (2005), pp. 246-253
    9. W.J. Zhu, J. Wang, H.S. Liu, Z.P. Jin and W.P. Gong, “The interfacial reaction between Sn–Ag alloys and Co substrate”, Mater Sci Eng A, 456 (2007), pp. 109-113
    10. P. Limaye, B. Vandevelde, R. Labie, D. Vandepitte and B. Verlinden, “Influence of Intermetallic Properties on Reliability of Lead-Free Flip-Chip Solder Joints”,IEEE Trans Adv Packag, 31 (2008), pp. 51-57
    11. W.C. Wu, T.E. Hsieh and H.C. Pan, “Investigation of Electroless Co ( W , P )  Thin Film as the Diffusion Barrier of Underbump Metallurgy”, J Electrochem Soc, 155 (2008), pp. D369-D376
    12. H.C. Pan and T.E. Hsieh, “An Investigation of Diffusion Barrier Characteristics of an Electroless Co(W,P) Layer to Lead-Free SnBi Solder”, J Electron Mater, 40 (2011),pp. 330-339
    13. H.C. Pan and T.E. Hsieh, “Diffusion Barrier Characteristics of Electroless Co(W,P) Thin Films to Lead-Free SnAgCu Solder”, J Electrochem Soc, 158 (2011), pp. P123-P129
    14. E.J. O’Sullivan, A.G. Schrott, M. Paunovic, C.J. Sambucetti, J.R. Marino, P.J. Bailey, S. Kaja, K.W. Semkow, “Electrolessly deposited diffusion barriers for microelectronics”, IBM J Res Dev, 42 (1998), p. 607-620
    15. M.W. Liang, H.T. Yen and T.-E. Hsieh, “Investigation of Electroless Cobalt-phosphorous Layer and its Diffusion Barrier Properties of PbSn Solder”, J. Electron. Mater., 35 (2006), pp. 1593-1599.
    16. C.-H. Wang and C.-Y. Kuo, “Coupling effect of the interfacial reaction in Co/Sn/Cu diffusion couples”, J. Electron. Mater., 39 (2010), pp. 1303-1308.
    17. E.M. Davis, W.E. Harding, R.S. Schwartz and J.J. Corning, “Solid Logic Technology: Versatile High Performance Microelectronics”, IBM J. Res. Dev., 8 (1964), p.102.
    18. Leif Halbo and Per Ohlckers, “Electronics Components, Packaging and Production”, University of Oslo, Norway, (1995).
    19. 謝宗雍,微電子材料與製程,第十章,電子封裝技術,p.385-467,2000年。
    20. C.-Y. Lee, T.-H. Huang and S.-C. Lu, “ In vitro investigation of novel calcium phosphates using osteogenic cultures”, J. Mater. Sci., 9(1998), pp. 337-345.
    21. P.T. Vianco and D.R. Frear, “Issues in the Replacement of Lead-bearing”, JOM, 45 (1993), pp.14-18.
    22. D.R. Frear, J.W. Jang, J.L. Lin and C. Zhang, “Pb-Free Solders for Flip-Chip Interconnects”, JOM, 53(2001), pp.28-32.
    23. K.L. Erickson, P.L. Hopkins and P.T. Vianco, “Modeling the Solid-state Reaction between Sn-Pb Solder and a Porous Substrate Coating”, J. Electron. Mater., 27 (1998), pp.1177-1192.
    24. P.T. Vianco, A.C. Kilgo and R. Grant, “Intermetallic Compound Layer Growth by Solid State Reactions between 58Bi-42Sn Solder and Copper”, J. Electron. Mater., 24 (1995), p.1493-1505.
    25. J.K. Kivilahti, “The Chemical Modeling of Electronic Materials and Interconnects”, JOM, 54 (2002), pp.52–57.
    26. T. Laurila, V. Vuorinen and J.K. Kivilahti, “Interfacial Reactions between Lead-free Solders and Common Base Materials”, Mater. Sci. Eng. R-Rep., 49 (2005), pp.1-60.
    27. S. Fürtauer, D. Li, D. Cupid and H. Flandorfer, “The Cu–Sn phase diagram, Part I: New experimental results”, Intermetallics, 34(2013), pp.142-147
    28. J.D. Bernal, “The Complex Structure of the Copper-tin Intermetallic Compounds”, Nature, 122 (1928), p.54.
    29. A. Gangulee, G.C. Das and M.B. Bever, “An X-ray Diffraction and Calorimetric Investigation of the Compound Cu6Sn5”, Metall. Mater. Trans. B, 4 (1973), pp.2063-2066.
    30. A.K. Larsson, L. Stenberg and S. Lidin, “The Superstructure of Domain-twinned η’-Cu6Sn5”, Acta Crystallogr. B, 50(1994), pp.636-643.
    31. H.C. Bhedwar, K.K. Ray, S.D. Kulkarni and V. Balasubramanian, “Kirkendall Effect Studied in Copper-tin Diffusion Couples”, Scripta Metall., 6(1972), pp.919-922.
    32. M. Onishi and H. Fujibuchi, “Reaction-Diffusion in the Cu-Sn System”, Trans. Jpn. Inst. Met., 16 (1975), pp.539-548.
    33. C. Wagner, “The Evaluation of Data Obtained with Diffusion Couples of Binary Single-Phase and Multiphase Systems”, Acta Metall., 17 (1969), pp.99-107.
    34. K.N. Tu and R.D. Thompson, “Kinetics of Interfacial Reaction in Bimetallic Cu-Sn Thin Films”, Acta Metall., 30 (1982), pp.947-952.
    35. L. Revay, “Interdiffusion and Formation of Intermetallic Compounds in Tin-copper Alloy Surface Coatings”, Surf. Technol., 5 (1977), pp.57-63.
    36. Z. Mei, A.J. Sunwoo and J.W. Morris, Jr., “Analysis of Low-Temperature Intermetallic Growth in Copper-Tin Diffusion Couples”, Metal. Trans. A, 23 (1992), pp.857-864.
    37. M. Oh, “Growth Kinetics in Intermetallic Phases in the Cu-Sn Binary and the Cu-Ni-Sn Ternary Systems at Low Temperatures”, Doctorate Dissertation, Lehigh University, 1994.
    38. T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak, “Binary Alloy Phase Diagrams, 2nd Edition”, ASM International, Materials Park, OH, (1990)
    39. S. Bader, W. Gust and H. Hieber, “Rapid Formation of Intermetallic Compounds by Interdiffusion in the Cu-Sn and Ni-Sn Systems”, Acta Metall. Mater., 43 (1995), pp.329-337.
    40. J. Haimovich, “Intermetallic Compound Growth in Tin and Tin-lead Platings over Nickel and its Effects on Solderability”, Welding Research Supplement, 68 (1989), pp.102-111.
    41. V. Vuorinen, T. Laurila, H. Yu and J.K. Kivilahti, “Phase Formation between Lead-free Sn-Ag-Cu Solder and Ni(P)/Au Finishes”, J. Appl. Phys., 99 (2006), pp.3530-3536.
    42. K. Zeng and K.N. Tu, “Six Cases of Reliability Study of Pb-Free Solder Joints in Electronic Packaging Technology”, Mater. Sci. Eng. R-Rep., 38 (2002), pp.55-105.
    43. S.K. Kang and V. Ramachandran, “Growth Kinetics of Intermetallic Phases at the Liquid Sn and Solid Ni Interface”, Scripta Metall., 14 (1980), pp.421-424.
    44. W.J. Thomlinson and H.G. Rhodes, “Kinetics of Intermetallic Compound Growth Between Nickel, Electroless Ni-P, Electroless Ni-B and Tin at 453 to 493K”, J. Mater. Sci., 22 (1987), pp.1769-1772.
    45. C.Y. Lee and K.L. Lin, “The Interaction Kinetics and Compound Formation between Electroless Ni-P and Solder”, Thin Solid Films, 249 (1994), pp.201-206.
    46. K.L. Lin and J.T. Chang, “The Elemental Interaction in the Electrodeposited Pb-Sn/Electroless Ni-P Deposit/Al Multilayer upon Heat Treatment”, Scripta Metall., 30 (1994), pp.559-564.
    47. J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear and P. Thomson, “Solder Reaction-assisted Crystallization of Electroless Ni(P) Under-Bump Metallization in Low Cost Flip Chip Technology”, J. Appl. Phys., 85 (1999), pp.8456-8463.
    48. P.L. Liu, Z. Xu, and J.K. Shang, “Thermal Stability of Interface between Electroless Ni and Sn-Pb Eutectic Solder: Part A. Interfacial Chemistry and Microstructure”, Metall. Mater. Trans. A, 31 (2000), pp.2857-2866.
    49. H. Matsuki, H. Ibuka and H. Saka, “TEM Observation of Interfaces in a Solder Joint in a Semiconductor Device”, Sci. Tech. Adv. Mater., 3 (2002), pp.261-270.
    50. J. G. Lee, F. Guo, K.N. Subramanian and J.P. Lucas, “Intermetallic Morphology around Ni Particles in Sn-3.5Ag Solder”, Solder. Surf. Mt. Technol., 14 (2002), pp.11-17.
    51. L.C. Shiau, C.E. Ho and C.R. Kao, “Reactions between Sn-Ag-Cu Lead-Free Solders and the Au/Ni Surface Finish in Advanced Electronic Packages”, Solder. Surf. Mt. Technol., 14 (2002), pp.25-29.
    52. M.K. Bhargava and K.J. Schubert, “Crystal Structure of NiSn”, J. Less-Common Met., 33 (1973), pp.181-189.
    53. C.W. Hwang, K. Suganuma, M. Kiso, and S. Hashimoto, “Interface Microstructures between Ni-P Alloy Plating and Sn-Ag-(Cu) Lead-Free Solders”, J. Mater. Res., 18 (2003), pp.2540-2543.
    54. J.W. Yoon, C.B. Lee and S.B. Jung, “Growth of an Intermetallic Compound Layer with Sn-3.5Ag-5Bi on Cu and Ni-P/Cu during Aging Treatment”, J. Electron. Mater., 32 (2003), pp.1195-1202.
    55. K.C. Hung and Y.C. Chan, “Study of Ni3P Growth due to Solder Reaction Assisted Crystallization of Electroless Ni-P Metallization”, J. Mater. Sci. Lett., 19 (2000), pp.1755-1757.
    56. Vassilev, G. P. ,Lilova and K. I., “Contribution to the thermodynamics of the Co-Sn system”, ARCH METALL MATER ,51(2006), pp.365-375
    57. G.P. Vassilev , K.I. Lilova and J.C. Gachon, “Calorimetric and phase diagram studies of the Co–Sn system”, Intermetallics, 15 (2007), pp.1156-1162.
    58. C.-H. Wang, C.-Y. Kuo, S.-E. Huang, and P.-Y. Li, “Temperature effects on liquid-state Sn/Co interfacial reactions”, Intermetallics, 32 (2013), pp. 57-63.
    59. W.J. Zhu, J. Wang, H.S. Liu, Z.P. Jin, W.P. Gong, “The interfacial reaction between Sn-Ag alloys and Co substrate”, Mater. Sci. Eng., A. , 456 (2007), pp. 109-113.
    60. C.- H. Wang and S.-W Chen, “Sn/Co solid/solid interfacial reactions”, Intermetallics, 16(2008), pp.524-530.
    61. Minho O, Y. Takamatsu and M. Kajihara, “Kinetics of Solid-State Reactive Diffusion between Co and Sn”, Mater. Trans., 55 (2014), pp. 1058-1064.
    62. H.-C. Pan and T.-E. Hsieh, “Diffusion barrier characteristics and shear fracture behaviors of eutectic PbSn solder/electroless Co(W,P) samples”, Mater. Sci. Eng., B. , 177 (2012), pp.61-68.
    63. C.-H. Wang and C.-Y. Kuo, “Interfacial reactions between eutectic Sn-Pb solder and Co substrate”, J Mater Sci, 46 (2011), pp.2654-2661.
    64. 陳東楷,“富錫端 Sn-Ag-Co-Ni 四元系統液相線投影圖與 Sn-Ag/Co反應偶之界面反應”,國立清華大學,碩士論文,2013。
    65. C.-H. Wang, K.-T. Li and P.Y. Huang, “Metastable CoSn4 formation induced by minor Ga addition and effective suppression effect on the IMC growth in solid-state Sn-Ga/Co reactions”, J Mater Sci, 51 (2016), p.7309-7321.
    66. C.-H. Wang, S.-E. Huang and K.-T. Li, “Inhibiting CoSn3 growth at the Sn/Co system by minor Zn addition”, Intermetallics, 56 (2015),pp.68-74.
    67. C.-H. Wang and K.-T. Li, “Strong effects of minor Ga addition on liquid-state Sn-Ga/Co interfacial reactions”, J. Alloys Compd., 649 (2015), pp. 1197-1204.
    68. G.Yang, D.Yang and L. Li, “Microstructure and morphology of interfacial intermetallic compound CoSn3 in Sn-Pb/Co-P solder joints” MICROELECTRON RELIAB, 5 (2015), pp.2403-2411.
    69. Ni. Lu, D. Yang and L. Li, “Interfacial reaction between Sn-Ag-Cu solder and Co-P films with various microstructures”, Acta Mater., 61 (2013), pp.4581-4590.
    70. D. Yang, G. Yang , J. Cai ,Q. Wang et al. , “Reliability of Sn-Pb solder joints with Cu and Co-P surface finishes under thermal cycling”, Electronic Packaging Technology (ICEPT), 2014 15th International Conference on, pp.239-242
    71. J. Cannis, “Green IC packaging”, Advenced Packaging, 8 (2001),pp. 33-38.
    72. M. Abtew and G. Selvaduray, “Lead-free Solder in Microelectronics”, Mater. Sci. Eng., R. , 27 (2000), pp.95-141.
    73. “Properties of Lead-free Solders release 4.0”, National Institute of Standards and Technology., Colorado, (2002)
    74. S. K. Kang and A.K. Sarkhel, “Lead (Pb)-Free Solders for Electronic Packaging”, J. Electron. Mater., 23 (1994), pp.701-707.
    75. W.J. Plumbridge and C.R. Gagg, “The mechanical properties of lead-containing and lead-free solders—meeting the environmental challeng”, P I MECH ENG L-J MAT, 214 (2000), pp.153-161.
    76. W.J. Tomlinson and A. Fullylover, “Strength of tin-based soldered joints”, J. Mater. Sci., 27 (1992), pp.5777-5782.
    77. “Phase Diagrams & Computational Thermodynamics”, National Institute of Standards and Technology.( http://www.metallurgy.nist.gov/phase/solder/agsn.html)
    78. D.Q. Yu, L. Wang, C.M.L. Wu, C.M.T. Law, “The formation of nano-Ag3Sn particles on the intermetallic compounds during wetting reaction”, J. Alloys Compd., 389 (2005), pp.153–158.
    79. X. Liu, M. Huang, Y. Zhao, C.M.L. Wu and Lai Wang, “The formation of nano-Ag3Sn particles on the intermetallic compounds during wetting reaction”, J. Alloys Compd., 492 (2010), pp. 433-438.
    80. J.W. Jang D.R. Frear, T.Y. Lee and K.N. Tu, “Morphology of interfacial reaction between lead-free solders and electroless Ni-P under bump merallization”, J. Appl. Phys., 88 (2000), p.6359.
    81. K. Zeng and K.N. Tu, “Six Case of Reliability Study of Pb-free Solder Joints in Electronic Packaging Technology”, Mater. Sci. Eng., R., 38 (2002), pp.5777-5782.
    82. K.N. Tu , “ Electronic Thin-Film Reliability”, Cambridge University Press, Cambridge ; New York, (2011).
    83. OQMD : An Open Quantum Materials Database, http://oqmd.org/materials/composition/CoSn3
    84. G. Neumann, C. Tuijn, “Self-diffusion and Impurity Diffusion in Pure Metals, 1st Edition Handbook of Experimental Data”, Pergamon Press, Amsterdam; Boston; London, (2009).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE