簡易檢索 / 詳目顯示

研究生: 吳毓崇
Yu-Chung Wu
論文名稱: 氫鍵與鹵鍵間之協同作用
The Cooperativity between Hydrogen Bond and Halogen Bond
指導教授: 游靜惠
Chin-Hui Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 72
中文關鍵詞: 氫鍵鹵鍵協同性
外文關鍵詞: hydrogen bond, halogen bond, cooperativity
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以分析X─HCN─HF、X─HCN─BrF、以及X─HCN─Br2三組具近似線性結構之三元體分子系統之氫鍵及鹵鍵鍵長與鍵能,來探討氫鍵與鹵鍵之間的協同性。在系統中X代表六種X-配基,分別為乙炔、水、氨、氯化氫、氰化氫以及氟化氫單體。本研究之理論計算是在Gaussian 98軟體中以MP2、mPW1PW91以及B3LYP三種理論方法並搭配6-311++G(d, p)基底函數來執行。在計算結果中,三元體的氫鍵與鹵鍵鍵長與鍵能顯示出不同的大小順序。針對氫鍵與鹵鍵鍵能依X-配基之不同所顯示的大小順序,我們應用Hammett方程式之概念來深入分析。在此分析當中,三組三元體系統中的氫鍵與鹵鍵之協同性與氰化氫右側鍵結之鍵能分別顯示三組直接的線性關係。此三組線性關係的截距代表沒有X-配基誘發的協同作用之HCN─HF、HCN─BrF、以及HCN─Br2三個二元體之鍵能,且與理論計算得出的二元體鍵能之誤差小於2.7 %。另一方面,此三組線性關係中的斜率顯示三元體系統中氫鍵和鹵鍵間之協同性對於X-配基之變化的靈敏度。基底重疊誤差對於斜率值造成的影響經比對發現其最大偏差為0.103,且並未改變在線性關係中所描述之氫鍵與鹵鍵間協同性之化學性質。透過斜率值,可以對本研究中三種獨立的三元體系統中氫鍵與鹵鍵間之協同性作有效的預測。


    The cooperativity between hydrogen bond and halogen bond is investigated by analyzing the bond energy and bond length of three sets of nearly linear trimer systems: X─HCN─HF, X─HCN─BrF, and X─HCN─Br2. The symbol X refers to X-ligand and includes C2H2, H2O, NH3, HCl, HCN, HF. Three computational levels, MP2, mPW1PW91, and B3LYP are used to carry out the theoretical computations with the 6-311++G(d, p) basis set in the Gaussian 98 package. Different sequences are observed in bond lengths and bond energies of the hydrogen bonds and halogen bonds in trimers. The concept of the Hammett equation is applied to examine the sequence of the hydrogen-bond and halogen-bond energies in trimers. Linear relationships between the cooperativity and the bond energies of the bonding between the nitrogen of HCN and hydrogen of HF in trimers are observed. The intercepts are found to be the corresponding dimer bond energies without cooperativity effects. The deviation of the intercepts from calculated dimer bond energies is less than 2.7 %. The BSSE effect on the linear correlations is examined, and it does not change the chemical properties of trimer systems with a variation less than 0.103 for the slopes of the linear correlation. The slopes of these linear correlations show the reaction sensitivity to the change of X-ligands in the interactions between hydrogen bond and halogen bond. By using the slopes, the cooperativity in the three trimer groups can be estimated with acceptable accuracy.

    摘要 i Abstract ii Table of Contents iii List of Tables v List of Figures vi List of Schemes vii I. Introduction 1 II. Computational Methodology 5 A. The Construction of Systems 5 B. Theoretical Methods 6 1. Computational methods 6 1.1 The determination of the theoretical methods 6 1.2 M□ller-Plesset perturbation theory 7 1.3 Density functional theory 9 1.4 The comparison between DFT and MP theory 12 2. Basis set superposition error computation 12 3. Proton affinity computation 14 4. Population analysis 15 4.1 The determination of the theoretical methods 15 4.2 MPA method 15 4.3 ESP method 17 4.4 The comparison between MPA and ESP methods 17 5. Hammett equation 18 6. Program, basis set, optimization, and frequency computation 20 III. Results and Discussion 21 A. Geometry 21 B. Energy 38 C. The Regularity in the Cooperativity within the HB-HalB Interactions 41 1. The feasibility of applying the Hammett-equation technique for the analysis on X- and Y-bond energies of trimers 41 2. The substituent parameter,□□ 44 2.1 Definition and validity of □ 44 2.2 The sequence in □ values 46 3. The reaction parameter,□□ 49 4. Effects of BSSE and methods on bond energy, □, and □ value 52 5. The proton affinity and population analysis 60 5.1 Proton affinity 60 5.2 Population analysis 62 IV. Conclusions 66 References 69

    (1) Alkorta, I.; Rozas, I.; Elguero, J. Chem. Soc. Rev. 1998, 27, 163.
    (2) Desiraju, G. R. Acc. Chem. Res. 1996, 29, 441.
    (3) Fernandez-Berridi, M. J.; Iruin, J. J.; Irusta, L.; Mercero, J. M.; Ugalde, J. M. J. Phys. Chem. A 2002, 106, 4187.
    (4) Grabowski, S. J. J. Phys. Chem. A 2001, 105, 10739.
    (5) Liu, Q.; Hoffmann, R. J. Am. Chem. Soc. 1995, 117, 10108.
    (6) Pan, Y.; McAllister, M. A. J. Am. Chem. Soc. 1997, 119, 7561.
    (7) Pan, Y.; McAllister, M. A. J. Org. Chem. 1997, 62, 8171.
    (8) Pauling, L. General Chemistry; W.H. Freeman: San Francisco, 1947.
    (9) Ramos, M.; Alkorta, I.; Elguero, J.; Golubev, N. S.; Denisov, G. S.; Benedict, H.; Limbach, H.-H. J. Phys. Chem. A 1997, 101, 9791.
    (10) Rozas, I.; Alkorta, I.; Elguero, J. J. Phys. Chem. A 1997, 101, 4236.
    (11) Stasko, D.; Hoffmann, S. P.; Kim, K.-C.; Fackler, N. L. P.; Larsen, A. S.; Drovetskaya, T.; Tham, F. S.; Reed, C. A.; Rickard, C. E. F.; Boyd, P. D. W.; Stoyanov, E. S. J. Am. Chem. Soc. 2002, 124, 13869.
    (12) Steve, S. Hydrogen Bonding: A Theoretical Perspective; Oxford University Press: New York, 1997.
    (13) Sumathi, R.; Chandra, A. K. Chem. Phys. Lett. 1997, 271, 287.
    (14) Cabaleiro-Lago, E. M.; R□os, M. A. J. Chem. Phys. 2000, 112, 2155.
    (15) Dkhissi, A.; Ramaekers, R.; Houben, L.; Adamowicz, L.; Maes, G. Chem. Phys. Lett. 2000, 331, 553.
    (16) Guo, H.; Salahub, D. R. Angew. Chem. Int. Ed. 1998, 37, 2985.
    (17) Hankins, D.; Moskowitz, J. W.; Stillinger, F. H. J. Chem. Phys. 1970, 53, 4544.
    (18) Kobko, N.; Paraskevas, L.; del Rio, E.; Dannenberg, J. J. J. Am. Chem. Soc. 2001, 123, 4348.
    (19) Sum, A. K.; Sandler, S. I. J. Phys. Chem. A. 2000, 104, 1121.
    (20) Tsuzuki, S.; Houjou, H.; Nagawa, Y.; Goto, M.; Hiratani, K. J. Am. Chem. Soc. 2001, 123, 4255.
    (21) M□, O.; Y□□ez, M.; Elguero, J. J. Chem. Phys. 1997, 107, 3592.
    (22) Parra, R. D.; Zeng, X. C. J. Chem. Phys. 1999, 110, 6329.
    (23) Pedulla, J. M.; Kim, K.; Jordan, K. D. Chem. Phys. Lett. 1998, 291, 78.
    (24) Xantheas, S. S. J. Chem. Phys. 1994, 100, 7523.
    (25) Hagemeister, F. C.; Gruenloh, C. J.; Zwier, T. S. J. Phys. Chem. A 1998, 102, 82.
    (26) Gupta, R. B.; Brinkley, R. L. AIChE J. 1998, 44, 207.
    (27) Bent, H. A. Chem. Rev. 1968, 68, 587.
    (28) Legon, A. C. Chem. Phys. Lett. 1997, 279, 55.
    (29) Legon, A. C. Chem. Eur. J. 1998, 4, 1890.
    (30) Legon, A. C. Angew. Chem. Int. Ed. 1999, 38, 2686.
    (31) Legon, A. C.; Thumwood, J. M. A.; Waclawik, E. R. Chem. Eur. J. 2002, 8, 940.
    (32) Ananthavel, S. P.; Manoharan, M. Chem. Phys. 2001, 269, 49.
    (33) Karpfen, A. Theor. Chem. Acc. 2003, 110, 1.
    (34) Lommerse, J. P. M.; Stone, A. J.; Taylor, R.; Allen, F. H. J. Am .Chem. Soc. 1996, 118, 3108.
    (35) Metrangolo, P.; Resnati, G. Chem. Eur. J. 2001, 7, 2511.
    (36) Wang, W.; Wong, N.-B.; Zheng, W.; Tian, A. J. Phys. Chem. A 2004, 108, 1799.
    (37) Zou, J.-W.; Jiang, Y.-J.; Guo, M.; Hu, G.-X.; Zhang, B.; Liu, H.-C.; Yu, Q.-S. Chem. Eur. J. 2005, 11, 740.
    (38) Valerio, G.; Raos, G.; Meille, S. V.; Metrangolo, P.; Resnati, G. J. Phys. Chem. A 2000, 104, 1617.
    (39) Romaniello, P.; Lelj, F. J. Phys. Chem. A 2002, 106, 9114.
    (40) Lu, Y.-X.; Zou, J.-W.; Wang, H.-Q.; Yu, Q.-S.; Zhang, H.-X.; Jiang, Y.-J. J. Phys. Chem. A 2005, 109, 11956.
    (41) Masella, M.; Flament, J. P. J. Chem. Phys. 1998, 108, 7141.
    (42) Masella, M.; Gresh, N.; Flament, J.-P. J. Chem. Soc., Faraday Trans. 1998, 94, 2745.
    (43) Wang, W.; Tian, A.; Wong, N.-B. J. Phys. Chem. A 2005, 109, 8035.
    (44) Zhang, Y.; Zhao, C.-Y.; You, X.-Z. J. Phys. Chem. A 1997, 101, 2879.
    (45) Alkorta, I.; Rozas, I.; Elguero, J. J. Phys. Chem. A 1998, 102, 9278.
    (46) Taft, R. W.; Gurka, D.; Joris, L.; Schleyer, P. v. R.; Rakshys, J. W. J. Am. Chem. Soc. 1969, 91, 4801.
    (47) Kryachko, E. S.; Zeegers-Huyskens, T. J. Phys. Chem. A 2002, 106, 6832.
    (48) Levine, I. N. Quantum Chemistry; Pearson Education Taiwan Ltd.: Taipei, 2004.
    (49) M□ller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.
    (50) Cramer, C. J. Essentials of Computational Chemistry; John Wiley & Sons: West Sussex, 2002.
    (51) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.
    (52) Koch, W.; Holthausen, M. C. A Chemist's Guide to Density Functional Theory; WILEY-VCH: Weinheim, 2001.
    (53) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
    (54) Tsuzuki, S.; L□thi, H. P. J. Chem. Phys. 2001, 114, 3949.
    (55) Lozynski, M.; Rusinska-Roszak, D.; Mack, H.-G. J. Phys. Chem. A 1998, 102, 2899.
    (56) Garcia, A.; Elorza, J. M.; Ugalde, J. M. J. Mol. Str. (Theochem) 2000, 501-502, 207.
    (57) Karpfen, A. Chem. Phys. Lett. 1999, 299, 493.
    (58) Karpfen, A. J. Phys. Chem. A 2001, 105, 2064.
    (59) Ruiz, E.; Salahub, D. R.; Vela, A. J. Phys. Chem. 1996, 100, 12265.
    (60) Latajka, Z.; Berski, S. J. Mol. Str. (Theochem) 1996, 371, 11.
    (61) Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664.
    (62) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
    (63) Binkley, J. S.; Pople, J. A. Int. J. Quant. Chem. 1975, 9, 229.
    (64) Bartlett, R. J. Ann. Rev. Phys. Chem. 1981, 32, 359.
    (65) Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 275.
    (66) Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 281.
    (67) Head-Gordon, M.; Pople, J. A.; Frisch, M. J. Chem. Phys. Lett. 1988, 153, 503.
    (68) S□bo, S.; Alml□f, J. Chem. Phys. Lett. 1989, 154, 83.
    (69) Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, J. S. Int. J. Quant. Chem. Symp. 1979, 13, 325.
    (70) Handy, N. C.; Schaefer, H. F. I. J. Chem. Phys. 1984, 81, 5031.
    (71) Pople, J. A.; Binkley, J. S.; Seeger, R. Int. J. Quant. Chem. Symp. 1976, 10, 1.
    (72) Pople, J. A.; Seeger, R.; Krishnan, R. Int. J. Quant. Chem. Symp. 1977, 11, 149.
    (73) Krishnan, R.; Pople, J. A. Int. J. Quant. Chem. 1978, 14, 91.
    (74) Raghavachari, K.; Pople, J. A.; Replogle, E. S.; Head-Gordon, M. J. Phys. Chem. 1990, 94, 5579.
    (75) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671.
    (76) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1993, 48, 4978.
    (77) Perdew, J. P.; Burke, K.; Wang, Y. Phys. Rev. B 1996, 54, 16533.
    (78) Becke, A. D. Phys. Rev. A 1988, 38, 3098.
    (79) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
    (80) Perdew, J. P. Phys. Rev. B 1986, 33, 8822.
    (81) Becke, A. D. J. Chem. Phys. 1996, 104, 1040.
    (82) Adamo, C.; Barone, V. Chem. Phys. Lett. 1997, 274, 242.
    (83) Perdew, J. P.; Ernzerhof, M.; Burke, K. J. Chem. Phys. 1997, 105, 9982.
    (84) Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553.
    (85) Finston, H. L.; Rychtman, A. C. A New View of Current Acid-Base Theories; John Wiley & Sons Inc.: New York, 1982.
    (86) Lipkowitz, K. B.; Boyd, D. B. Reviews In Computational Chemistry; VCH: New York, 1990.
    (87) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833.
    (88) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1841.
    (89) Mulliken, R. S. J. Chem. Phys. 1955, 23, 2338.
    (90) Mulliken, R. S. J. Chem. Phys. 1955, 23, 2343.
    (91) Scrocco, E.; Tomasi, J. Adv. Quantum Chem. 1978, 11, 115.
    (92) Smit, P. H.; Derissen, J. L.; van Duijneveldt, F. B. Mol. Phys. 1979, 37, 521.
    (93) Cox, S. R.; Williams, D. E. J. Comput. Chem. 1981, 2, 304.
    (94) Breneman, C. M.; Wiberg, K. B. J. Comput. Chem. 1990, 11, 361.
    (95) Chirlian, L. E.; Francl, M. M. J. Comput. Chem. 1987, 8, 894.
    (96) Besler, B. H.; Merz, K. M. J.; Kollman, P. A. J. Comput. Chem. 1990, 11, 431.
    (97) Comell, W. D.; Cieplak, P.; Bayly, C. I.; Kollman, P. A. J. Am. Chem. Soc. 1993, 115, 9620.
    (98) Maskill, H. The physical basis of organic chemistry; Oxford University Press: New York, 1985.
    (99) Hammett, L. P. Physical organic chemistry: reaction rates, equilibria, and mechanisms; McGraw-Hill, Inc.: New York, 1970.
    (100)Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Salvador, P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98; Revision A.11 ed.; Gaussian, Inc.: Pittsburgh, PA, 2001.
    (101)Malaspina, T.; Fileti, E. E.; Riveros, J. M.; Canuto, S. J. Phys. Chem. A 2006, ASAP.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE