研究生: |
賴志杰 Lai, Jhih-Jie |
---|---|
論文名稱: |
以時間解析紅外放光光譜法研究不同二氧化矽厚度包覆之金奈米棒經光激發後之輻射緩解 Radiative relaxation of SiO2-coated Au nanorods of different shell thicknesses upon photoexcitation monitored by time-resolved infrared emission spectroscopy |
指導教授: |
朱立岡
Chu, Li-Kang |
口試委員: |
陳仁焜
Chen, Jen-Kun 何美霖 Ho, Mei-Lin |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 121 |
中文關鍵詞: | 金奈米棒 、二氧化矽 、核殼奈米粒子 、時間解析紅外放光光譜法 、光熱效應 、輻射緩解 |
外文關鍵詞: | gold nanorod, silica, core-shell nanoparticle, time-resolved infrared emission spectroscopy, photothermal effect, radiative relaxation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金奈米棒(gold nanorod,AuNR)與二氧化矽組成之核殼(core-shell)奈米粒子具有良好的光熱轉換效率且可穩定存在於多元環境,並提供優異的表面修飾潛力而成為光致熱源之熱門材料。因此,了解其受光激發後之熱傳遞動態過程有助於光熱相關應用。吾人合成四種不同二氧化矽殼層厚度包覆之金奈米棒,並將其塗佈於氟化鈣鹽片以製備乾燥薄膜。以脈衝寬度 7 ns 之 1064 nm 雷射激發薄膜並由時間解析傅立葉轉換紅外光譜儀收取其於微秒-毫秒時域之紅外放光光譜,發現樣品之熱輻射訊號波形包含矽氧橋鍵光學聲子模式(optical phonon modes of Si-O-Si bridge,1000-1250 cm-1)與水彎曲振動(1600-1650 cm-1)之貢獻。推測金奈米棒將熱傳遞至二氧化矽殼層後,二氧化矽及其孔洞中的水可受激發而躍遷至高振動能階,並以振動輻射形式將能量釋放。此外,樣品放光峰相較於二氧化矽的吸收峰於1250 cm-1以上有明顯增寬,且其隨二氧化矽愈厚而愈明顯,推測此訊號可能包含黑體輻射之貢獻。積分1000-1250 cm-1區間訊號所得到的時間側寫顯示樣品之放光時間隨著二氧化矽愈厚而延遲,若以線性疊加之雙指數函數方程式擬合其衰減曲線,得以進一步分析光學聲子之緩解動力學過程。吾人於本研究證實金奈米棒與二氧化矽組成之核殼奈米粒子可將其受光激發後產生之熱能量轉換為矽氧橋鍵光學聲子,並期望應用於振動激發(vibrational excitation)誘導反應,使核殼奈米粒子具有成為奈米催化反應器之潛力。
Silica-coated gold nanorods (AuNRs) exhibit high stability and excellent photothermal properties involving the highly efficient conversion of light into heat. Moreover, the porous silica can serve as a platform for further surface modification. All of the advantages enable them to act as multifunctional nanoscale heating elements. Understanding the heat transfer dynamics of such plasmonic core-shell nanoparticles is essential to the relevant photothermal applications. In this work, silica-coated AuNRs with different shell thicknesses (AuNR@X-SiO2, X=20, 35, 50 and 65, denoting the SiO2 thickness along longitudinal surface plasmonic mode in nm) were synthesized and prepared as dried films deposited on a CaF2 window. Transient infrared emissions of these films upon 7-ns pulsed 1064-nm excitation of their longitudinal surface plasmonic bands were monitored with a time-resolved step-scan Fourier-transform spectrometer. The infrared emission contours included the optical phonon modes of Si-O-Si bridge (1000-1250 cm-1) and the bending mode of adsorbed molecular water (1600-1650 cm-1) within the porous silica. As a result, the silica and water could be heated up and populate at their vibrationally excited states via the heating by the gold lattice and partially thermalize via the radiative processes. Besides, comparing the observed emission contours with the infrared absorption spectrum of the films revealed that the additional emission intensity at >1250 cm-1 could be attributed to the blackbody radiation, which was more obvious as the silica thickness increased. The decay temporal profiles of the emission at 1000-1250 cm-1 was prolonged as the thickness of silica increased. A bi-exponential function was used to fit the decaying parts of temporal profiles to characterize the relaxation kinetics of Si-O-Si optical phonons, including this intrinsic spontaneous emission, inner-particle and inter-particle energy transfer through non-radiative processes. Here, we demonstrated the silica-coated AuNRs can convert the thermal energy into the optical phonon modes of Si-O-Si bridge upon photoexcitation. The emissions of Si-O-Si optical phonons are expected to be applied in the vibrational energy induced reactions.
第一章
[1] Kamat, P. V. J. Phys. Chem. B 2002, 106, 7729-7744.
[2] Mayer, K. M.; Hafner, J. H. Chem. Rev. 2011, 111, 3828-3857.
[3] Webb, J. A.; Bardhan, R. R. Soc. Chem. 2014, 6, 2502-2530.
[4] Burrows, N. D.; Lin, W.; Hinman, J. G.; Dennison, J. M.; Vartanian, A. M.; Abadeer, N. S.; Grzincic, E. M.; Jacob, L. M.; Li, J.; Murphy, C. J. Langmuir 2016, 32, 9905-9921.
[5] Jaque, D.; Martínez Maestro, L.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Martín Rodríguez, E.; García Solé, J. R. Soc. Chem. 2014, 6, 9494-9530.
[6] Tadepalli, S.; Yim, J.; Madireddi, K.; Luan, J.; Naik, R. R.; Singamaneni, S. Chem. Mater. 2017, 29, 6308-6314.
[7] Xiong, W.; Sikdar, D.; Yap, L. W.; Guo, P.; Premaratne, M.; Li, X.; Cheng, W. Nano Res. 2016, 9, 415-423.
[8] Li, Z.; Huang, H.; Tang, S.; Li, Y.; Yu, X.; Wang, H.; Li, P.; Sun, Z.; Zhang, H.; Liu. C.; Chu, P. K. Biomaterials 2016, 74, 144-154.
[9] Tang, X.; Tan, L.; Shi, K.; Peng, J.; Xiao, Y.; Li, W.; Chen, L.; Yang, Q.; Qian, Z. Acta Pharm. Sin. B 2018, 8, 587-601.
[10] Yan, N.; Wang, X.; Lin, L.; Song, T.; Sun, P.; Tian, H.; Liang, H.; Chen, X. Adv. Funct. Mater. 2018, 28, 1800490.
[11] Song, Z.; Liu, Y.; Shi J.; Ma, T.; Zhang, Z.; Ma, H.; Cao, S. Mater. Sci. Eng. C 2018, 83, 90-98.
[12] Cui, X.; Cheng, W.; Han, X. J. Mater. Chem. B 2018, 6, 8078-8084.
[13] Wang, X.-W.; Gao, W.; Fan, H.; Ding, D.; Lai, X.-F.; Zou, Y.-X.; Chen, L.; Chen, Z.; Tan, W. Nanoscale 2016, 8, 7942-7948.
[14] Hanske, C.; Sanz-Ortiz, M. N.; Liz-Marzán, L. M. Adv. Mater. 2018, 30, 1707003.
[15] Ghosh, S. K.; Pal, T. Chem. Rev. 2007, 107, 4797-4862.
[16] Hirakawa, T.; Kamat, P. V. J. Am. Chem. Soc. 2005, 127, 3928-3934.
[17] Mohammed, L.; Gomaa, H. G.; Ragab, D.; Zhu, J. Particuology 2017, 30, 1-14.
[18] Gawande, M. B.; Goswami, A.; Asefa, T.; Guo, H.; Biradar, A. V.; Peng, D.-L.; Zboril, R.; Varma, R. S. Chem. Soc. Rev. 2015, 44, 7540-7590.
[19] Wang, X.; He, B.; Hu, Z.; Zeng, Z.; Han, S. Adv. Mater. Technol. 2014, 15, 043502.
[20] Guerrero-Martínez, A.; Pérez-Juste, J.; Liz-Marzán, L. M. Adv. Mater. 2010, 22, 1182-1195.
[21] Dalacu, D.; Martinua, L. Appl. Phys. Lett. 2000, 77, 4283-4285.
[22] Geddes, C. D.; Lakowicz, J. R. J Fluoresc. 2002, 12, 121-129.
[23] Abadeer, N. S.; Brennan, M. R.; Wilson, W. L.; Murphy, C. J. ACS Nano 2014, 8, 8392-8406.
[24] Sanz-Ortiz, M. N.; Sentosun, K.; Bals, S.; Liz-Marzán, L. M. ACS Nano 2015, 9, 10489-10497.
[25] Vázquez-Vázquez, C.; Vaz, B.; Giannini, V.; Pérez-Lorenzo, M.; Alvarez-Puebla, R. A.; Correa-Duarte, M. A. J. Am. Chem. Soc. 2013, 135, 13616-13619.
[26] Yang, J.; Shen, D.; Zhou, L.; Li, W.; Li, X.; Yao, C.; Wang, R.; El-Toni, A. M.; Zhang, F.; Zhao, D. Chem. Mater. 2013, 25, 3030-3037.
[27] Chen, M.; Luo, W.; Zhang, Z.; Wang, R.; Zhu, Y.; Yang, H.; Chen X. ACS Appl. Mater. Interfaces 2017, 9, 42156-42166.
[28] Hamanaka, Y.; Kuwabata, J.; Tanahashi, I.; Omi, S.; Nakamura, A. Phys. Rev. B 2001, 63, 104302.
[29] Hodak, J. H.; Henglein, A.; Hartland, G. V. J. Phys. Chem. B 2000, 104, 9954-9965.
[30] Inouye, H.; Tanaka, K.; Tanahashi, I.; Hirao, K. Phys. Rev. B 1998, 57, 11334-11340.
[31] Perner, M.; Bost, P.; Lemmer, U.; von Plessen, G.; Feldmann, J.; Becker, U.; Mennig, M.; Schmitt, M.; Schmidt, H. Phys. Rev. Lett. 1997, 78, 2192-2195.
[32] Roberti, T. W.; Smith, B. A.; Zhang, J. Z. J. Chem. Phys. 1995, 102, 3860-3866.
[33] Hu, M.; Wang, X.; Hartland, G. V.; Salgueiriño-Maceira, V.; Liz-Marzán, L. M.
Chem. Phys. Lett. 2003, 372, 767-772.
[34] Nguyen, S. C.; Zhang, Q.; Manthiram, K.; Ye, X.; Lomont, J. P.; Harris, C. B.;
Weller, H.; Alivisatos, A. P. ACS Nano 2016, 10, 2144-2151.
[35] Liu, J.-L.; Yang, Y.-T.; Lin, C.-T.; Yu, Y.-J.; Chen, J.-K.; Chu, L.-K. J. Phys. Chem. C 2017, 121, 878-885.
[36] Guo, S.-S.; Chu, L.-K. J. Phys. Chem. Lett. 2018, 9, 5110-5115.
[37] Higgins, J.; Conjusteau, A.; Scoles, G.; Bernasek, S. L. J. Chem. Phys. 2001, 114, 5277-5283.
[38] Shen, T.-C.; Wang, C.; Abeln, G. C.; Tucker, J. R.; Lyding, J. W.; Avouris, Ph.; Walkup, R. E. Sci. Adv. 1995, 268, 1590-1592.
[39] Pascual, J. I.; Lorente, N.; Song, Z.; Conrad. H.; Rust, H.-P. Nature 2003, 423, 525-528.
[40] Huang, K.; Leung, L.; Lim, T.; Ning, Z.; Polanyi, J. C. ACS Nano 2014, 8, 12468-12475.
第二章
[1] Raimes, S. Rep. Prog. Phys. 1957, 20, 1-37.
[2] Mayer, K. M.; Hafner, J. H. Chem. Rev. 2011, 111, 3828-3857.
[3] Ordal, M. A.; Bell, R. J.; Alexander, R. W.; Long, L. L.; Querry, M. R. Appl. Opt. 1985, 24, 4493-4499.
[4] Derkachova, A.; Kolwas, K.; Demchenko, I. Plasmonics 2016, 11, 941-951.
[5] Bohren, C. F.; Huffman, D. R. Absorption and Scattering of Light by Small Particles.
Wiley, 1983.
[6] Davis, T. J.; Vernon, K. C.; Gómez, D. E. Opt. Express 2009, 17, 23655-23663.
[7] Zhao, J.; Pinchuk, A. O.; McMahon, J. M.; Li, S.; Ausman, L. K.; Atkinson, A. L.; Schatz, G. C. Acc. Chem. Res. 2008, 41, 1710-1720.
[8] Baffou, G.; Quidant, R.; Girard, C. Appl. Phys. Lett. 2009, 94, 153109.
[9] Baffou, G.; Rigneault, H. Phys. Rev. B 2011, 84, 035415.
[10] Hu, M.; Chen, J.; Li, Z.-Y.; Au, L.; Hartland, G. V.; Li, X.; Marqueze, M.; Xia, Y. Chem. Soc. Rev., 2006, 35, 1084-1094.
[11] Burrows, N. D.; Lin, W.; Hinman, J. G.; Dennison, J. M.; Vartanian, A. M.; Abadeer,
N. S.; Grzincic, E. M.; Jacob, L. M.; Li, J.; Murphy, C. J. Langmuir 2016, 32, 9905-9921.
[12] Link, S.; Mohamed, M. B.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 3073-3077.
[13] Baffou, G. Thermoplasmonics: Heating Metal Nanoparticles Using Light. Cambridge University Press, 2018.
[14] Link, S.; Burda, C.; Wang, Z. L.; El-Sayed, M. A. J. Chem. Phys. 1999, 111, 1255-1263.
[15] Mohanmed, M. B.; Temer, S. A.; Link, S.; Braun, M.; El-Sayed, M. A. Chem. Phys.
Lett. 2001, 343, 55-63.
[16] Hu, M.; Hartland, G. V. J. Phys. Chem. B 2002, 106, 7029-7033.
[17] Link, S.; Hathcock, D. J.; Nikoobakht, B.; El-Sayed, M. A. Adv. Mater. 2003, 15, 393-396.
[18] Link, S.; El-Sayed, M. A. Annu. Rev. Phys. Chem. 2003, 54, 331-366.
[19] Arbouet, A.; Voisin, C.; Christofilos, D.; Langot, P.; Del Fatti, N.; Vallée, F.; Lermé,
J.; Celep, G.; Cottancin, E.; Gaudry, M.; Pellarin, M.; Broyer, M.; Maillard, M.; Pileni, M. P.; Treguer, M. Phys. Rev. Lett. 2003, 90, 177401.
[20] Huang, W.; Qian, W.; El-Sayed M. A. J. Phys. Chem. C 2007, 111, 10751-10757.
[21] Ekici, O.; Harrision, R. K.; Durr, N. J.; Eversole, D. S. E.; Lee, M.; Ben-Yakar, A.
J. Phys. D: Appl. Phys. 2008, 41, 185501.
[22] Bauer, C.; Abid, J.-P.; Fermin, D.; Girault, H. H. J. Chem. Phys. 2004, 120, 9302-9315.
[23] Dubi, Y.; Sivan, Y. Light Sci. Appl. 2019, 8, 89.
[24] Voisin, C.; Christofilos, D.; Del Fatti, N.; Vallée, F.; Prével, B.; Cottancin, E.; Lermé,
J.; Pellarin, M.; Broyer, M. Phys. Rev. Lett. 2000, 85, 2200-2203.
[25] Voisin, C.; Christofilos, D.; Loukakos, P. A.; Del Fatti, N.; Vallée, F.; Lermé, J.;
Gaudry, M.; Cottancin, E.; Pellarin, M.; Broyer, M. Phys. Rev. B 2004, 69, 195416.
[26] Link, S.; Burda, C.; Mohamed, M. B.; Nikoobakht, B.; El-Sayed, M. A. Phys. Rev. B 2000, 61, 6086-6090.
[27] Hu, M.; Wang, X.; Hartland, G. V.; Salgueiriño-Maceira, V.; Liz-Marzán, L. M.
Chem. Phys. Lett. 2003, 372, 767-772.
[28] Yu, K.; Zijlstra, P.; Sader, J. E.; Xu, Q.-H.; Orrit, M. Nano Lett. 2013, 13, 2710-2716.
[29] Sassaroli, E.; Li, K. C. P.; O’Neill, B. E. Phys. Med. Biol. 2009, 54, 5541-5560.
[30] Nedyalkov, N. N.; Imamova, S. E.; Atanasov, P. A.; Toshkova, R. A.; Gardeva, E. G.; Yossifova, L. S.; Alexandrov, M. T.; Obara, M. Appl. Surf. Sci. 2011, 257, 5456-5459.
[31] Siems, A.; Weber, S. A. L.; Boneberg, J.; Plech, A. New J. Phys. 2011, 13, 043018.
[32] Liu, J.-L.; Yang, Y.-T.; Lin, C.-T.; Yu, Y.-J.; Chen, J.-K.; Chu, L.-K. J. Phys. Chem. C 2017, 121, 878-885.
[33] Guo, S.-S.; Chu, L.-K. J. Phys. Chem. Lett. 2018, 9, 5110-5115.
[34] Jiang, K.; Smith, D. A.; Pinchuk, A. J. Phys. Chem. C 2013, 117, 27073-27080.
[35] Shah, J.; Park, S.; Aglyamov, S.; Larson, T.; Ma, L.; Sokolov, K.; Johnston, K.; Milner, T.; Emelianov, S. Y. J. Biomed. Opt. 2008, 13, 034024.
[36] Richardson, H. H.; Hickman, Z. N.; Govorov, A. O.; Thomas, A. C.; Zhang, W.; Kordesch, M. E. Nano Lett. 2006, 6, 783-788.
[37] Chiu, M.-J.; Chu, L.-K. Phys. Chem. Chem. Phys. 2015, 17, 17090-17100.
[38] Ho, C.-Y.; Chu, L.-K. ACS Omega 2018, 3, 16960-16968.
[39] Lai, J.-J.; Chu, L.-K. CSLT 2019, 77, 113-126.
[40] Simon, S. H. The Oxford Solid State Basics. Oxford University Press, 2013.
[41] Prasankumar, R. P.; Taylor, A. J. Optical Techniques for Solid-State Materials Characterization. CRC Press, 2012.
[42] Wu, J.-R.; Thakur, D.; Chiang, S.-E.; Chandel, A.; Wang, J.-S.; Chiu, K.-C.; Chang, S. H. Nanomaterials 2019, 9, 1269.
[43] Zhao, P.; Ni, R.; Wang, K.; Hong, X.; Ding, Y.; Cong, T.; Liu, J.; Zhao, H. Anal. Bioanal. Chem. 2017, 409, 4207-4213.
[44] Richardson, H. H.; Carlson, M. T.; Tandler, P. J.; Hernandez, P.; Govorov, A. O. Nano Lett. 2009, 9, 1139-1146.
[45] Cole, J. R.; Mirin, N. A.; Knight, M. W.; Goodrich, G. P.; Halas, N. J. J. Phys. Chem. C 2009, 113, 12090-12094.
第三章
[1] Faust, B. Modern Chemical Techniques: An Essential Reference for Students and Teachers. Royal Society of Chemistry, 1997.
[2] Harvey, D. Modern Analytical Chemistry. McGraw-Hill, 2000.
[3] Prescott, S. W.; Mulvaney, P. J. Appl. Phys. 2006, 99, 123504.
[4] Webb, J. A.; Bardhan, R. Nanoscale 2014, 6, 2502-2530.
[5] JASCO, Model V-630/650/660/670 spectrophotometer hardware/function manual. 2010.
[6] 羅聖全 科學基礎研究之重要利器—掃瞄式電子顯微鏡. 科學研習 2013, 52, 1-4.
[7] 陳建淼; 洪連輝 穿透式電子顯微鏡. 科學Online 科技部高瞻自然科學教學資源平台, 2009.
[8] Gleichmann, N. SEM vs TEM. Technology Networks, 2020.
[9] Thermo Fisher Scientific, Transmission Electron Microscopy vs Scanning Electron Microscopy. (accessed on 2020/06/27)
https://www.thermofisher.com/tw/zt/home/materials-science/learning-center/applications/sem-tem-difference.html
[10] 高君陶 電子顯微鏡的原理與應用. 中山女高學報 2002, 35-45.
[11] Hamilton, A. W.; Quail, F. J. Tribol. 2011, 133, 044001.
[12] NanoFASE, TEM - Transmission Electron Microscopy. (accessed on 2020/06/27)
http://nanofase.eu/show/element_1454
[13] 林昆霖 肉眼看不見的奈米級材料及元件檢測分析就靠穿透式電子顯微鏡.
奈米通訊 Nano communication 2003, 20, 34-38.
[14] 李曉琪 穿透式電子顯微鏡(TEM): 電子波動性看奈米世界. 科學研習 2013, 52, 5-9.
[15] Bernath, P. F. Encyclopedia of Analytical Science, 2nd.: Fourier Transform Techniques. Elsevier, 2005.
[16] Wartewig, S. IR and Raman Spectroscopy: Fundamental Processing. Wiley, 2005.
[17] Kauppinen, J.; Partanen, J. Fourier Transform in Spectroscopy. Wiley, 2011.
[18] Griffiths, P. R.; Haseth, J. A. Fourier Transform Infrared Spectroscopy. Wiley, 2007.
[19] Fellgett, P. B. J. Phys. Radium 1958, 19, 187-191.
[20] Jacquinot, P. Rep. Progr. Phys. 1960, 23, 267-312.
[21] Connes, J.; Connes, P. J. Opt. Soc. Am. 1966, 56, 896-910.
[22] Chu, L.-K.; Lee, Y.-P. Instruments Today 2009, 31, 27-35.
[23] Mertz, L. Transformations in Optics. Wiley, 1965.
[24] Mertz, L. Infrared Phys. 1967, 7, 17-23.
[25] User Guide – Infrared Microscopic Imaging (accessed on 2020/06/27)
https://midir.lightsource.ca/user-guide/infrared-microscopic-imaging/
[26] Jiang, E. Y. Advanced FT-IR Spectroscopy. Thermo Electron Corporation, 2003.
[27] Uhmann, W.; Becker, A.; Taran, C.; Siebert, F. Appl. Spectrosc. 1991, 45, 390-397.
[28] Geerts, Y.; Steyaert, M.; Sansen, W. M. C. Design of Multi-Bit Delta-Sigma A/D Converters. Springer Science & Business Media, 2002.
[29] Vigderman, L.; Zubarev, E. R. Chem. Mater. 2013, 25, 1450-1457.
[30] Nguyen, S. C.; Zhang, Q.; Manthiram, K.; Ye, X.; Lomont, J. P.; Harris, C. B.; Weller, H.; Alivisatos, A. P. ACS Nano 2016, 10, 2144-2151.
[31] Lang, N.; Tuel, A. Chem. Mater. 2004, 16, 1961-1966.
[32] WolframMathWorld, Apodization Function. (accessed on 2020/06/27)
https://mathworld.wolfram.com/ApodizationFunction.html?fbclid=IwAR3EW-dsxcjg4k5Lm6AJtDytj1CplX8Ns8eADs8xLKfdwFbkldPP37iUFHI
[33] Smith, D. K.; Korgel, B. A. Langmuir 2009, 25, 9518-9524.
[34] Jessl, S.; Tebbe, M.; Guerrini, L.; Fery, A.; Alvarez-Puebla, R. A.; Pazos-Perez, N. Small 2018, 14, 1703879.
第四章
[1] Brioude, A.; Jiang, X. C.; Pileni, M. P. J. Phys. Chem. B 2005, 109, 13138-13142.
[2] Zhan, Q.; Qian, J.; Li, X.; He, S. Nanotechnology 2009, 21, 055704.
[3] Xie, L.; Dong, B.; Jiang, Z.; Wang, Y.; Liu, T.; Bai, X. J. Mater. Res. 2011, 26, 2414-2419.
[4] Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 8410-8426.
[5] Baffou, G. Thermoplasmonics: Heating Metal Nanoparticles Using Light. Cambridge University Press, 2018.
[6] Khlebtsov, B. N.; Khanadeev, V. A.; Khlebtsov, N. G. Langmuir 2008, 24, 8964-8970.
[7] He, J.; Unser, S.; Bruzas, I.; Cary, R.; Shi, Z.; Mehra, R.; Aron, K.; Sagle, L. Colloids Surf. B 2018, 163, 140-145.
[8] Horiguchi, Y.; Honda, K.; Kato, Y.; Nakashima, N.; Niidome, Y. Langmuir 2008, 24, 12026-12031.
[9] Zhao, P.; Ni, R.; Wang, K.; Hong, X.; Ding, Y.; Cong, T.; Liu, J.; Zhao, H. Anal. Bioanal. Chem. 2017, 409, 4207-4213.
[10] Rajput, D.; Costa, L.; Terekhov, A.; Lansford, K.; Hofmeister, W. Nanotechnology 2012, 23, 105304.
[11] Sharpe, S. W.; Zang, Y. P.; Wittig, C.; Beaudet, R. A. J. Chem. Phys. 1990, 92, 943-958.
[12] Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Nature 1997, 389, 827-829.
[13] Ekici, O.; Harrison, R. K.; Durr, N. J.; Eversole, D. S.; Lee, M.; Ben-Yakar, A. J. Phys. D: Appl. Phys. 2008, 41, 185501.
[14] Bernath, P. F. Spectra of atoms and molecules. Oxford University Press, 1995.
[15] Refractive index of SiO2 (Silicon, dioxide, Silica, Quartz) – Popova (accessed on 2020/06/27)
https://refractiveindex.info/?shelf=main&book=SiO2&page=Popova
[16] Chen, L.; Lu, G. J. Electroanal. Chem. 2006, 597, 51-59.
[17] Théorêt, A.; Sandorfy, C. Can. J. Chem. 1964, 42, 57-62.
[18] González, L.; Mó, O.; Yáñez, M. J Chem. Phys. 1999, 111, 3855-3861.
附錄
[1] Bernath, P. F. Spectra of atoms and molecules. Oxford University Press, 1995.
[2] Refractive index of SiO2 (Silicon, dioxide, Silica, Quartz) – Popova (accessed on 2020/06/27)
https://refractiveindex.info/?shelf=main&book=SiO2&page=Popova
[3] Leite, C. A. P.; Souza, E. F. de; Galembeck, F. J. Braz. Chem. Soc. 2001, 12, 519-525.