研究生: |
王薇雅 Wang, Wei Ya |
---|---|
論文名稱: |
應用於雷射干涉重力波偵測器開發工作之單晶矽懸臂樑之機械震動性質研究 Study of mechanical vibration and loss of silicon cantilever for development of the high-reflection mirror in the laser interference gravitational wave detector |
指導教授: |
趙煦
Chao, Shiuh |
口試委員: |
李正中
徐進成 任貽均 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 機械損耗 、單晶矽懸臂樑 、應變能 、重覆夾持誤差 |
外文關鍵詞: | silicon cantilever, strain energy, re-clamping error |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雷射干涉重力波偵測器是運用於直接量測重力波存在與否以證明廣義相對論以及開發重力波天文學之重要儀器設備。由於重力波訊號極其微弱,因此需有效降低系統中的各種雜訊才能進行重力波觀測,而系統整體最為靈敏的頻率範圍中以光學薄膜熱擾動所造成的雜訊影響最大。一般以量測機械損耗並藉由統計力學中的Fluctuation dissipation theorem間接得到熱擾動資訊。而欲探討薄膜之機械損耗時,需將薄膜鍍製於本身機械損耗相當低的基板,目前重力波偵測系統是以熔融石英玻璃作為基板,矽基板為下一世代偵測器基板之主要候選材料。考慮重力波偵測系統最靈敏之頻率範圍約在40~400Hz,因此本研究使用矽基板,並製成第一模態之共振頻率在此範圍內的懸臂樑狀。
本論文即是針對矽懸臂樑基板進行探討,包含懸臂樑尺寸設計,以ANSYS模擬各共振模態之頻率、振形,利用機械損耗量測系統進行各模態之損耗量測,將量測結果與暫態分析模擬結果相互比較,以完整建立ANSYS模態、暫態分析模擬及高頻模態機械損耗量測之流程。另一部分則是針對造成機械損耗測量誤差進行分析,統計各共振模態之重覆夾持誤差大小及探討誤差來源。實驗室主要研究為探討各種薄膜材料之機械損耗,其需由量測鍍膜前後試片之機械損耗搭配應變能比而計算出,其中應變能比能以理論公式及模擬求得,而本論文另一部分為建立ANSYS模擬應變能比之流程。
[1] A. Einstein, Die grundlage der allgemeinen relativit¨atstheorie, Annalen der Physik 49 (1916) 769
[2] R. A. Hulse et al., Discovery of a pulsar in a binary system, The Astrophysical journal 195 (1975) L51
[3] L. Cadonati, Status and feature if the quest for gravitational waves, LIGO document: G1200594-v2
[4] LIGO Scientific Collaboration Group, Instrument science white paper, LIGO document: LIGO-T1100309-v5
[5] A. M. Sintes, Towards gravitational wave astronomy, LIGO document: G1300750-v1
[6] H. B. Callen et al., Irreversibility and generalized noise, Physical Review 83 (1951) 34
[7] R. F. Greene et al., On the formalism of thermodynamic fluctuation theory, Physical Review 83 (1951) 1231
[8] H. B. Callen et al., On a theorem of irreversible thermodynamics, Physical Review 86 (1952) 702
[9] I. W. Martin et al., Effect of heat treatment on mechanical dissipation in Ta2O5 coatings, Classical and Quantum Gravity 27 (2010) 225020
[10] G. M. Harry et al., Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings, Classical and Quantum Gravity 19 (2002) 897
[11] I. W. Martin et al., Research towards silicon suspensions and optics in future detectors, LIGO document: LIGO-G1100973-v2
[12] G. Sasso, Cryogenic Q-measurements on silicon, presentation at Friedrich Schiller University Jena (2006)
[13] I. W. Martin, Studies of materials for use in future interferometric gravitational wave detectors, Ph.D. thesis, University of Glasgow (2009)
[14] 李輝煌, ANSYS工程分析基礎觀念, 二版修訂, 高立圖書有限公司 (2009)
[15] ANSYS 12.1 Manual, Theory reference, ANSYS Inc. (2009) ch14
[16] 陳精一, ANSYS振動學實務分析, 高立圖書有限公司 (2005)
[17] R. D. Cook et al., Concepts and applications of finite element analysis, 4th ed., New York: John Wiley & Sons (2002) ch4.4
[18] R. W. Clough et al., Dynamic of structures, 2nd ed., New York: McGraw- Hill (1993) ch12
[19] ANSYS 14.0 Manual, Theory reference, ANSYS Inc. (2011) ch15.3
[20] S. S. Rao, Mechanical vibrations, 2nd ed., New York: Addison-Wesley Publishing Company (1990) ch2.6
[21] T. J. Quinn et al., Stress-dependent damping in Cu-Be torsion and flexure suspensions at stresses up to 1.1 GPa, Physics Letter A 197 (1995) 197
[22] U. Rabe et al., Vibrations of free and surface-coupled atomic force microscope cantilevers: theory and experiment, Review of Science Instruments 67 (1996) 3281
[23] Franz-Josef Elmer et al., Eigenfrequencies of a rectangular atomic force microscope cantilever in a medium, Journal of Applied Physics 81 (1997) 7709
[24] Matthew A. Hopcroft et al., What is the Young’s modulus of silicon?, Journal of Microelectromechanical system 19 (2010) 229
[25] S. Reid et al., Mechanical dissipation in silicon flexures, Physics Letters A 351 (2006) 205
[26] B. S. Berry et al., Vibrating reed internal friction apparatus for films and foils, IBM journal of research and development 19 (1975) 334
[27] D. R. M. Crooks, Mechanical loss and its significance in test mass mirrors of gravitational wave detectors, Ph.D. thesis, University of Glasgow (2002)
[28] R. M. Jones, Mechanics of composite materials, Philadelphia: Taylor & Francis (1999) ch3.2
[29] Gregory M Harry et al., Titania-doped tantala/silica coatings for gravitational wave detection, Classical and Quantum Gravity 24 (2007) 405
[30] I. Matrin et al., Measurements of a low temperature mechanical dissipation peak in a single layer of Ta2O5 doped with TiO2, LIGO document: LIGO-P060069-00-Z
[31] K. Hejduk et al., Dielectric coatings for infrared detectors, Optica Applicata 35 (2005) 437
[32] J. F. Shackelford et al., Materials Science and Engineering Handbook, CRC Press LLC (2001)
[33] R. Flaminio et al., A study of coating mechanical and optical losses in view of reducing mirror thermal noise in view of reducing mirror thermal noise in gravitational wave detectors, Classical and Quantum Gravity 27 (2010) 084030
[34] A. Stoffel et al., LPCVD against PECVD for micromechanical applications, Journal of Micromechanics and Microengineering 6 (1996) 1
[35] I. M. Pinto et al., Optical coatings and thermal noise in precision measurements,Camvbrige University Press: Baker & Taylor (2012) ch12
[36] D. R. M. Crooks, Experimental measurements of coating mechanical loss factor, Classical and Quantum Gravity 21 (2004) S1059
[37] B. E. A. Saleh et al., Fundamentals of photonics, 2nd ed., New Jersey: John Wiley & Sons (2007) ch10
[38] A. S. Nowick et al., Anelastic relaxation in crystalline solid, New York: Academic Press (1972)
[39] D. F. McGuigan et al., Measurements of the mechanical Q of single- crystal silicon at low temperature, Journal of Low Temperature Physics 30 (1978) 621
[40] J. B. Wachtman et al., Exponential temperature dependence of Young’s modulus for several oxides, Physical Review 122 (1961) 1754
[41] U.Gysin et al., Temperature dependence of the force sensitivity of silicon cantilevers, Physical Review B 69 (2004) 045403
[42] Wikipedia http://en.wikipedia.org/wiki/Thermal_conductivity
[43] R. G. Christian, The theory of oscillating-vane vacuum gauges, Vacuum 16 (1966) 175
[44] A. W. Heptonstall, Characterization of mechanical loss in fused silica ribbons for use in gravitational wave detector, University of Glasgow, Ph. D. thesis(2004)
[45] ANSYS 12.1 Manual, Command Reference, ANSYS Inc. (2009)
[46] 歐政勳, 室溫下量測機械損耗之系統設置與量測熔融石英玻璃懸臂樑及單晶矽懸臂之初部量測分析, 國立清華大學碩士論文 (2012)