簡易檢索 / 詳目顯示

研究生: 賴玉潔
Yu Chieh Lai
論文名稱: 接頭具間隙之撓性連桿機構在變轉速輸入下之動態問題研究
The dynamic behaviors of a four-bar linkages press with variable speed
指導教授: 王志宏
Ji Hung Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 198
中文關鍵詞: 變轉速沖床振動
外文關鍵詞: Mechanical press, Variable speed
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於連桿機構系統,過去皆藉由機構的尺寸合成設計來達到所需的輸出,但當所要求輸出運動在時序上有所改變時,即使只是些微差異亦必須重新進行設計、甚至改變整個系統之拓僕構造才能完成要求。近年來已有學者開始研究利用控制馬達輸入驅動桿件的轉速函數,使相同的連桿機構系統能夠擁有不同的輸出運動特性,則可不必更改系統之尺寸設計即可達到不同之輸出需求。但關於此部分之研究,目前皆假設在理想剛性系統下進行所需轉速函數的設計。爲了能夠瞭解更接近實際連桿機構在變轉速輸入下的運轉情形,則應更進一步考慮元件撓性特性、與接頭間隙等對於系統動態行為的影響。
    故本論文主要研究目的在於:探討變轉速函數輸入下、接頭具間隙之撓性連桿系統的動態行為,討論桿件與接頭之撓性特性、與接頭間隙等對於系統動態特性的影響;並進一步探討,當考慮撓性系統時,如何利用轉速函數的設計,使輸出符合需求、又同時使系統擁有較佳之動態特性。
    而最後結果顯示,當考慮更接近實際工程之撓性系統時(1)對於欲利用變轉速輸入使低階連桿機構達到高階機構之輸出軌跡時,若此需求軌跡曲線與原輸出曲線差異太大,則易造成系統動態特性變差,導致撞擊等額外動態問題的產生。(2)若僅限制在某區間或某時序符合輸出需求,只考慮理想剛性系統而設計得出的最佳轉速函數之分析結果是不適用於撓性系統的。在某些轉速函數輸入下,剛性系統擁有較佳的動態特性、卻可能引發撓性系統中嚴重撞擊、振動等情形。因此,需以更接近實際工程之撓性系統物理模型進行轉速函數的設計,才能使輸出符合需求、又同時使系統真正擁有較佳的動態特性。


    The purpose of this work is to investigate the dynamic behaviors of a four-bar linkage press by considering the effect of the flexibility of the linkage and the clearance of joints. Besides, a method to find the optimal input speed was proposed.
    The results show that the impact force in the joints of a press with a variable speed generally is far larger than that of the press with constant speed, and the impact force of a flexible system is also far larger than that of a rigid system. Therefore, the flexibility and clearance of a real press should be considered in designing a press with a variable speed. However, if the input speed is properly designed, the impact force may be drastically reduced.

    目錄 摘要 誌謝 目錄 符號表 第一章 前言 1-1 研究動機 1-2 文獻回顧 1-3 研究目標 第二章 理論分析 2-1 桿件之動態分析 2-1.1 座標系統建立 2-1.2 系統動態方程式 2-2 接頭物理模型 2-2.1碰撞對模型 2-2.2 彈性接頭之物理模型 2-3 輸入轉速函數設計 2-3.1 Bezier函數應用在轉速函數設計 2-3.2 週期函數應用在轉速函數設計 2-3.3 兩函數應用在轉速函數之比較 2-4 驅動力矩 2-5 搖撼力與搖撼力矩 2-6 沖床機構簡介 2-7 最佳化分析方法 2-7.1 最佳化設計概論 2-7.2 最佳化設計的數值方法 2-7.3 序列二次規劃法 第三章 模擬結果與討論 3-1 曲柄滑塊機構之物理模型 3-2 系統動態方程式與求解 3-2.1 系統動態方程式 3-2.2 輸入為滑塊輸出運動時的求解方式 3-2.3 輸入為曲柄軸轉速函數時的求解方式 3-3 模擬結果與討論 3-3.1 四連桿欲達成高階機構輸出運動的問題探討 3-3.2 最佳轉速函數設計之應用實例 (1) 變轉速下剛性與撓性系統動態之差異 (2) 撓性系統之最佳轉速函數分析 3-4 結論 第四章 結論 參考文獻 附錄

    【1】Rothbart, H. A., " Cams: Design, Dynamics and Accuracy," John Wiley & Sons, New York.
    【2】Tesar, D. and Matthew, G. K., " The Dynamics Synthesis, Analysis and Design of Modeled Cam systems," Lexington Books, New York.
    【3】Perju, D. and Lovasz, E. C., " The Synthesis Optimization of the Mechanisms with Variable Link Length," Proceedings of the 9th World Congress on the Theory of Machines and Mechanisms, Minalo, Vol.1, pp.43-46.
    【4】Connor, A. M., Douglas, S. S., and Gilmartin, M. J., " The Synthesis of Hybrid Five-Bar Path Generating Mechanisms Using Genetic Algorithms," IEE Genetic Algorithms in Engineering Systems: Innovations and Applications, pp.213-318.
    【5】Yossifon, S. and Shivpuri, R., " Optimization of a Double Knuckle Linkage Drive with Constant Mechanical Advantage for Mechanical Presses," International Journal Machine Tools and Manufacture, Vol.33, No.2, pp.193-222, 1993.
    【6】姚燕安," 凸輪機構的主動控制 ",博士論文,天津大學機械工程學院,民國八十八年。
    【7】陳維仁," 具曲柄輸入滑件輸出變轉速連桿機構之研究 ",博士論文,國立成功大學機械工程研究所,民國八十八年。
    【8】顏國智," 具負載變轉速伺服滑件曲柄機構之研究 ",碩士論文,國立成功大學機械工程研究所,民國八十八年。
    【9】Kammer, D. C. and Schlack, A. L., " Effects of Nonconstant Spin Rate on the Vibration of a Rotating Beam," Transactions of the ASME. Journal of Applied Mechanics, Vol.54, June, 1987.
    【10】Kammer, D. C. and Schlack, A. L., " Dynamic Response of a Radial Beam With Nonconstant Angular Velocity," Transactions of the ASME. Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol.109, April, 1987.
    【11】Haines, R. H. ," A Theory of Contact Loss Resolute Joints with Clearance," Journal Mechanical Engineering Science, Vol.22, No.3, pp.129-136, 1980.
    【12】Dubowsky, S. and Freudenstein, F., " Dynamic Analysis of Mechanical Systems with Clearances. Part 1 : Formation of Dynamic Model," Transactions of ASME Journal of Engineering for Industry, Vol.93, pp.305-309, 1971.
    【13】Dubowsky, S. and Freudenstein, F., " Dynamic Analysis of Mechanical Systems with Clearances. Part 2 : Dynamic Responce," Transactions of ASME Journal of Engineering for Industry, Vol.93, pp.310-316, 1971.
    【14】Dubowsky, S., Norris, M., Aloni, E. and Tmir, A., " A Analytical and Experimental Study of the Prediction of Impact in Planar Mechanical Systems with Clearances," Journal of Mechanisms, Transmissions, and Automation in Design, Vol.106, pp.444-451, 1984.
    【15】Deck, J. F. and Dubowsky, S., " On the Limitions of Predictions of the Dynamics Response of Machines with Clearance Connections," Journal of Mechanical Design, Vol.116, pp.833-841, 1994.
    【16】Gu, P. and Dubowsky, S., " Chaotic Vibration and Design Criteria for Machine Systems with Clearance Connections," Proceedings of 9th World Congress of the Theory of Machines and Mechanism, pp.1-6, 1995.
    【17】Deck, J. H., " The Dynamics of Spatial Elastic Mechanisms with Clearances and Support Structure," PhD thesis, Massachusetts Institute of Technology Dept. of Mechanical Engineering, 1992.
    【18】Barber, J. R., " Elasticity," Kluwer Academic Publishers, 1992.
    【19】Shabana, A. A., " Dynamics of Mutibody Systems," Cambridge University Press, 2ndEd., 1998.
    【20】Shabana, A. A., " Computational dynamics," Wiley, 1994.
    【21】Huston, R. L., " Multibody dynamics," Butterworths, 1990.
    【22】Fallahi, B., " An Enhanced Computational Scheme for the Analysis of Elastic Mechanisms," Computers and Structures, Vol.62, pp.369-732, 1997.
    【23】Sunada, W. and Dubowsky, S., " The Application of Finite Element Methods to the Dynamic Analysis of Flexible Spatial and Co-Planar Linkage Systems," Journal of Mechanical Design, Transactions of the ASME, Vol.103, pp.643-651, 1981.
    【24】Chunmei, J., Yang, Q., Ling F. and Ling Z., " The Non-Linear Dynamic Behavior of an Elastic Linkage Mechanism with Clearances," Journal of Sound and Vibration, Vol.249, pp.213-226, 2002.
    【25】Dubowsky, S. Deck, J. F. and Costello, H., " The Dynamics Modeling of Flexible Spatial Machine Systems with Clearance Connections," Journal of Mechanical, Transmissions and Automation in Design, Transaction of the ASME, Vol.109, pp.87-94, 1987.
    【26】呂明忠," 具間隙連桿機構撞擊改善方法之研究 ",碩士論文,國立清華大學動力機械工程研究所,民國九十二年。
    【27】楊福仁," 接頭具間隙連桿機構之碰撞問題研究 ",碩士論文,國立清華大學動力機械工程研究所,民國九十二年。
    【28】Dubowsky, S. and Gardner, T. N., " Dynamic Ineractions of Link Elasticity and Clearance Connections in Planar Mechanical Systems," Transactions of the ASME, Journal of Engineering for Industry, pp.652-661, May, 1975.
    【29】Dubowsky, S. and Gardner, T. N., " Design and Analysis of Multilink Flexible Mechanisms With Multiple Clearance Connections," Transactions of the ASME, Journal of Engineering for Industry, pp.88-96, February, 1977.
    【30】ADAMS Documentation, " ADAMS/Flex Theoretical Back- ground, " Mechanical Dynamics, Inc.
    【31】Curtis, F. G. and Patrick, O. W., " Applied Numerical Analysis," Addison Wesley, 4ndEd., 1989.
    【32】Venkataraman, P., " Applied optimization with MATLAB programming," Wesley, 2002.
    【33】徐國書," 牽桿式驅動機構之功差與間隙之研究 ",碩士論文,國立成功大學動力機械工程研究所,民國八十四年。
    【34】馮榮豐," 機構動力學與運動控制 ",滄海書局,民國九十年。
    【35】Kim, T. C., Rook, T. E., and Singh, R., " Effect of Smoothening Functions on the Frequency Response of an Oscillator with clearance Non-linearity," Journal of Sound and Vibration, pp.665-678, 2003.
    【36】Lange, K., " Handbook of Metal Forming," Society of Manufacturing Engineers, 1985.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE