研究生: |
賴婉甄 |
---|---|
論文名稱: |
研究氧化鈰基固態氧化物燃料電池電解質的氧離子傳導性 |
指導教授: | 洪哲文 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 氧化鈰 、離子傳導性 、固態氧化物燃料電池 、分子動力學模擬 、電解質 |
外文關鍵詞: | ceria, ionic conductivity, SOFC, molecular dynamics simulation, electrolyte |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討固態氧化物燃料電池在中溫的操作環境下,氧離子在電解質中的傳導現象。本文使用少量的氧化釔(Y2O3)添加到氧化鈰(CeO2)中,形成所謂氧化釔添加氧化鈰(Y2O3-doped-CeO2,稱為YDC)。一般來說,固態氧化物燃料電池使用氧化釔穩定化氧化鋯(Yttria-stablized zirconia,稱為YSZ)作為電解質,由於需要在約1000℃的高溫下操作,使得電池啟動慢,而且需要更多的保溫設備以維持電池的高溫,導致成本偏高,無法商業化。為了改良此現象並降低成本,因此本文探討在不同氧化釔濃度與不同的操作溫度下,使用YDC當作電解質的氧離子傳導性。
現今固態氧化物燃料電池中電解質的研究方向仍偏重於實驗,相關的模擬研究較少。因此本文使用模擬的方式,總共設定四個氧化釔濃度,並佐以文獻中的實驗值作為印證,希望能夠從這四個濃度當中,取得最佳的氧離子傳導性。經由模擬得到的結果顯示,當Y2O3的濃度為10.2 mol%時,會有最佳的氧離子傳導性。雖然操作溫度越高,氧離子的傳導性能越好,但是整體的穩定性將相對的降低,因此本文進一步探討當濃度固定,不同操作溫度的氧離子傳導性。
本文使用分子動力學的方法,建立程式碼,修改為目前需求的環境。模擬分子運動的情形,並設定周遭環境變數與需要的參數,探討固體分子與流體分子在微觀下的運動,並比照實驗值加以印證模擬的正確性。
1.G. V. Lewis, and C. R. A. Catlow, “Potential Models for Ionic Oxides”, Journal of Physics C: Solid State Physics, 18, p.p. 1149-1161, 1985.
2.H. W. Brinkman, W. J. Briels, and H. Verweij, “Molecular Dynamics Simulations of Yttria-Stabilized Zirconia”, Chemical Physics Letters, 247, p.p. 386-390, 1995.
3.H. L. Tuller, and A. S. Nowick, “Doped Ceria as a Solid Oxide Electrolyte”, Journal of the Electrochemical Society, 122, p.p.255-259, 1975.
4.D.Y. Wang, D.S. Park, J. Griffith, and A.S. Nowick, “Oxygen-Ion Conductivity and Defect Interactions in Yttria-Doped Ceria”, Solid State Ionics, 2, p.p.95-105, 1981.
5.J. V. Herle, T. Horita, T. Kawada, N. Sakai, H. Yokokawa, and M. Dokiya, “Sintering Behaviour and Ionic Conductivity of Yttria-Doped Ceria”, Journal of the European Ceramic Society, 16, p.p. 961-973, 1996.
6.J. V. Herle, T. Horita, T. Kawada, N. Sakai, H. Yokokawa, and M. Dokiya, “Low Temperature Fabrication of (Y, Gd, Sm)-doped Ceria Electrolyte”, Solid State Ionics, 86-88, p.p. 1255-1258, 1996.
7.T. Mori, T. Ikegami, H. Yamamura, and T. Atake, “Improvement of Electrical Conductivity in Fluorite Related Y2O3 and Fluorite CeO2 Systems Based on a Unique effective Index”, Journal of Thermal Analysis and Calorimetry, 57, p.p. 831-838, 1999.
8.T. Mori, J. Drennan, Y. Wang, G. Auchterlonie, J. G. Li, and A. Yago, “Influence of nano-structural feature on electrolytic properties in Y2O3 doped CeO2 system”, Science and Technology of Advanced Materials, 4, p.p 213-220, 2003.
9.X. Guo, W. Sigle, and J. Maier, “Blocking Grain Boundaries in Yttria-Doped and Undoped Ceria Ceramics of High Purity”, J. of Am. Ceram. Soc, 86, p.p. 77-87, 2003.
10.M. Hartmanvá, E. E. Lomonova, V. Navrátil, F. Kundracik, and I. Kostic, “The Influence of Ceria Addition on the Quality of Grown Yttria Crystals, their Crystalline and Defect Structures”, Materials Science and Engineering B, 113, p.p.1-6, 2004.
11.J. M. Haile, “Molecular Dynamics Simulation Elementary Methods”, JOHN WILEY & SONS, 1992.
12.張育瑋(洪哲文), “固態氧化物燃料電池電解質氧離子傳導分子動力模擬”, 國立清華大學碩士論文, 2004.
13.N. V. Skorodumova, S.I. Simak, B. I. Lundqvist, I. A. Abrikosov, and B. Johansson, “Quantum Origin of the Oxygen Storage Capability of Ceria”, Physical Review Letters, 89, p.p.16660-1-1660-4, 2002.
14.M. Mogensen, N. M.Sammes, and G. A. Tompsett, “Physical, chemical and electrochemical properties of pure and doped ceria”, Solid State Ionics, 129, p.p. 63-94, 2000.
15.T. P. Perumal, V. Sridhar, K. P. N. Murthy, K. S. Easwarakumar, and S. Ramasamy, “Molecular Dynamics Simulations of Oxygen Ion Diffusion in Yttria-Stabilized Zirconia”, Physica A, 309, p.p.35-44, 2002.
16.E.C. Subbarao, and H.S. Maiti, “Solid Electrolytes with Oxygen Ion Conduction”, Solid State Ionics, 11, p.p. 317-338, 1984.
17.J.V. Herle, T. Horita, T. Kawada, N. Sakai, H. Yokokawa, and M. Dokiya, “Fabrication and Sintering of Fine Yttria-Doped Ceria Powder”, J. of Am. Ceram. Soc, 80, p.p.933-940, 1997.